Evaluation of a battery energy storage system for coordination of demand response and renewable energy resources

Author(s):  
Kirsch Mackey ◽  
Roy McCann ◽  
Khalid Rahman ◽  
Robert Winkelman
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2003 ◽  
Author(s):  
Ujjwal Datta ◽  
Akhtar Kalam ◽  
Juan Shi

To deal with the technical challenges of renewable energy penetration, this paper focuses on improving the grid voltage and frequency responses in a hybrid renewable energy source integrated power system following load and generation contingency events. A consolidated methodology is proposed to employ a battery energy storage system (BESS) to contribute to voltage regulation through droop-type control and frequency regulation by assimilated inertia emulation (IE) and droop-type control. In addition, a novel frequency-dependent state-of-charge (SOC) recovery (FDSR) is presented to regulate BESS power consumption within the FDSR constraints and recharge the battery during idle periods whenever needed. The efficacy of the proposed BESS controller is demonstrated in an IEEE-9 bus system with a 22.5% photovoltaics (PV) and wind penetration level. The simulation results obtained manifest the satisfactory performance of the proposed controller in regulating simultaneous voltage and frequency in terms of lower rate of change of frequency and better frequency nadir. Furthermore, the proposed FDSR demonstrates its superiority at the time of SOC recovery compared to the conventional approach.


2021 ◽  
Vol 13 (6) ◽  
pp. 3576
Author(s):  
Cheng-Ta Tsai ◽  
Yu-Shan Cheng ◽  
Kuen-Huei Lin ◽  
Chun-Lung Chen

Due to the increased development of the smart grid, it is becoming crucial to have an efficient energy management system for a time-of-use (TOU) rate industrial user in Taiwan. In this paper, an extension of the direct search method (DSM) is developed to deal with the operating schedule of a TOU rate industrial user under the demand bidding mechanism of Taipower. To maximize the total incentive obtained from the Taiwan Power Company (TPC, namely Taipower), several operational strategies using a battery energy storage system (BESS) are evaluated in the study to perform peak shaving and realize energy conservation. The effectiveness of the proposed DSM algorithm is validated with the TOU rate industrial user of the TPC. Numerical experiments are carried out to provide a favorable indication of whether to invest in a BESS for the renewable energy-based TOU rate industrial user in order to execute the demand bidding program (DBP).


Sign in / Sign up

Export Citation Format

Share Document