scholarly journals A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting

2010 ◽  
Vol 37 (4) ◽  
pp. 3310-3317 ◽  
Author(s):  
Hong Thom Pham ◽  
Van Tung Tran ◽  
Bo-Suk Yang
Author(s):  
Marcelo V. Corrêa ◽  
Luis A. Aguirre

Este artigo apresenta uma breve revisão da literatura enfocando recentes desenvolvimentos na área de identificação caixa-cinza. Os diversos métodos são agrupados dependendo de como a informação auxiliar é utilizada no processo de identificação. Discutem-se propriedades da representação NARMAX (nonlinear autoregressive moving average model with exogenous inputs) polinomial aplicando-se identificação caixa-cinza. Mecanismos de utilização de informação auxiliar na seleção de estrutura e na estimação de parâmetros de modelos NARMAX polinomiais são discutidos e ilustrados usando dois exemplos numéricos, um simulado e outro com dados medidos. Em ambos os casos obtêm-se modelos via procedimentos caixa-preta e caixa-cinza. As características dos modelos assim obtidos são comparadas de forma a ilustrar aspectos importantes da identificação caixa-cinza.


Geophysics ◽  
1978 ◽  
Vol 43 (7) ◽  
pp. 1368-1383 ◽  
Author(s):  
M. Aftab Alam

The orthonormal lattice filter algorithm is a unified recursive technique to estimate the least‐squares coefficients of a broad class of linear models. It consists of a sequence of two recursions. First, the Gram‐Schmidt orthonormalization procedure estimates a set of inner products from multiple signal vectors, for example, multichannel sampled observations. A lattice type network structure, suitable for adaptive applications, implements the Gram‐Schmidt procedure. Second, a recursion introduced in this paper transforms the inner products into model coefficients. In contrast with conventional algorithms, this algorithm does not require the covariance matrix to design the filters but directly filters the observations. We consider a number of special cases of the multichannel model, for example the rational polynomial model, the autoregressive model, and the autoregressive‐moving average model with known and unknown inputs. In addition, we introduce the autoregressive‐orthonormal model for the unknown input case. We also transform the coefficients of the autoregressive‐orthonormal model to estimate the poles and zeros of a signal transfer function and thereby obtain the amplitude and phase spectra of the signal. For each model, we appropriately simplify the general orthonormal lattice filter algorithm and also the filter network structure. It turns out that for the autoregressive model the simplified algorithm is the Itakura‐Saito algorithm which is a direct version of the Levinson recursion and the simplified structure is a lattice type ladder. With the example of a noisy truncated signal, we compare the actual and estimated values of (a) the coefficients of a known‐input autoregressive‐moving average model, and (b) the autoregressive‐orthonormal power density spectrum of the signal.


Sign in / Sign up

Export Citation Format

Share Document