A scatter search method for heterogeneous fleet vehicle routing problem with release dates under lateness dependent tardiness costs

2020 ◽  
Vol 150 ◽  
pp. 113302 ◽  
Author(s):  
Jaikishan T. Soman ◽  
Rahul J Patil
2020 ◽  
Vol 12 (3) ◽  
pp. 1077
Author(s):  
Keyju Lee ◽  
Junjae Chae ◽  
Bomi Song ◽  
Donghyun Choi

In Southeast Asian cities, it is common for logistic companies to operate a heterogeneous fleet of delivery vehicles with motorcycles being the preferred vehicle to handle the final phase of delivery. In such scenarios, heterogeneous fleet vehicle routing problem (HFVRP) is generally applied to plan an optimal delivery. However, in many downtown cores of large and rapidly developing Southeast Asian cities, HFVRP is neither viable nor reliable because of road usage restrictions. The purpose of this article is to develop and test a different approach that accurately takes these restrictions into account and provides viable and more sustainable results. Restrictions in this paper refer to situations of urban areas in Vietnam where (i) certain vehicle types are prohibited in specified areas or where narrow alleyways limit the utilization of vehicles that exceed the road capacity and (ii) certain roads are exclusive to certain vehicle types. In networks, limited access and exclusive lanes are represented as links, or arcs, exclusive to one or another. Taking these limitations into consideration, we have developed a unique model, which we have termed Vehicle Routing Problem with Exclusive Links (VRP-EL). The model was validated and tested for its performance on scenarios with varying ratios of exclusive links. Scenarios up to 500 customers were tested on a meta-heuristic algorithm, simulated annealing. VRP-EL produces realistic outcomes. Limiting certain links to be selected according to vehicle types increases overall travel distance. However, this increase outweighs the cost of re-planning and rerouting had they not been constrained initially. The reduction in traveling distance leads to fossil fuel reduction for the overall system. The estimation of reduced carbon emissions through applying the proposed model is presented. Considering the severe traffic congestion and carbon emissions caused by motorcycles in Vietnam, the proposed model leads to a sustainable road environment.


2016 ◽  
Vol 7 (4) ◽  
pp. 18-38 ◽  
Author(s):  
Meryem Berghida ◽  
Abdelmadjid Boukra

This paper presents a new Quantum Inspired Harmony Search algorithm with Variable Population Size QIHSVPS for a complex variant of vehicle routing problem (VRP), called HVRPMBTW (Vehicle Routing Problem with Heterogeneous fleet, Mixed Backhauls and Time Windows). This variant is characterized by a limited number of vehicles with various capacities and costs. The vehicles serve two types of customers: linehauls customers and backhauls customers. Each customer must be visited in a specific interval of time. The authors propose to use quantum principles to accelerate evolution process and variable population size to decrease the number of solution's evaluation, when the improvement is insignificant. This new approach was tested on benchmarks and produces satisfactory results compared to other approaches.


Sign in / Sign up

Export Citation Format

Share Document