Coupling of serotonergic input to NMDA receptor-phosphorylation following peripheral nerve injury via rapid, synaptic up-regulation of ND2

2014 ◽  
Vol 255 ◽  
pp. 86-95 ◽  
Author(s):  
Zigor Aira ◽  
Itsaso Buesa ◽  
Diego Rada ◽  
Juan Carlos Gómez-Esteban ◽  
Jon Jatsu Azkue
1995 ◽  
Vol 687 (1-2) ◽  
pp. 103-113 ◽  
Author(s):  
Aldric T. Hama ◽  
James R. Unnerstall ◽  
Julie B. Siegan ◽  
Jacqueline Sagen

2020 ◽  
Vol 15 (6) ◽  
pp. 522-530
Author(s):  
Jiawei Shu ◽  
Feng Cheng ◽  
Zhe Gong ◽  
Liwei Ying ◽  
Chenggui Wang ◽  
...  

Spinal cord injury (SCI) is different from peripheral nerve injury; it results in devastating and permanent damage to the spine, leading to severe motor, sensory and autonomic dysfunction. SCI produces a complex microenvironment that can result in hemorrhage, inflammation and scar formation. Not only does it significantly limit regeneration, but it also challenges a multitude of transplantation strategies. In order to promote regeneration, researchers have recently begun to focus their attention on strategies that manipulate the complicated microenvironment produced by SCI. And some have achieved great therapeutic effects. Hence, reconstructing an appropriate microenvironment after transplantation could be a potential therapeutic solution for SCI. In this review, first, we aim to summarize the influential compositions of the microenvironment and their different effects on regeneration. Second, we highlight recent research that used various transplantation strategies to modulate different microenvironments produced by SCI in order to improve regeneration. Finally, we discuss future transplantation strategies regarding SCI.


Sign in / Sign up

Export Citation Format

Share Document