Experimental tube-side pressure drop characteristics of FLNG spiral wound heat exchanger under sloshing conditions

2017 ◽  
Vol 88 ◽  
pp. 194-201 ◽  
Author(s):  
Chongzheng Sun ◽  
Yuxing Li ◽  
Jianlu Zhu ◽  
Hui Han
2019 ◽  
Vol 109 ◽  
pp. 109874
Author(s):  
Chongzheng Sun ◽  
Yuxing Li ◽  
Hui Han ◽  
Jianlu Zhu ◽  
Yaqi Qin ◽  
...  

Author(s):  
Rong Yu ◽  
Andrew D. Sommers ◽  
Nicole C. Okamoto ◽  
Koushik Upadhyayula

In this study, we have explored the effectiveness of heat exchangers constructed using anisotropic, micro-patterned aluminum fins to more completely drain the condensate that forms on the heat transfer surface during normal operation with the aim of improving the thermal-hydraulic performance of the heat exchanger. This study presents and critically evaluates the efficacy of full-scale heat exchangers constructed from these micro-grooved surfaces by measuring dry/wet air-side pressure drop and dry/wet air-side heat transfer data. The new fin surface design was shown to decrease the core pressure drop of the heat exchanger during wet operation from 9.3% to 52.7%. Furthermore, these prototype fin surfaces were shown to have a negligible effect on the heat transfer coefficient under both dry and wet conditions while at the same time reducing the wet airside pressure drop thereby decreasing fan power consumption. That is to say, this novel fin surface design has shown the ability, through improved condensate management, to enhance the thermal-hydraulic performance of plain-fin-and-tube heat exchangers used in air-conditioning applications. This paper also presents data pertaining to the durability of the alkyl silane coating.


2014 ◽  
Vol 11 (4) ◽  
Author(s):  
Hie Chan Kang ◽  
Hyejung Cho ◽  
Jin Ho Kim ◽  
Anthony M. Jacobi

The present work is performed to evaluate the heat transfer performance of a heat exchanger used in a direct methanol fuel cell. Because of material constraints and performance requirements, a louver fin heat exchanger is modified for use with conventional microchannel tubes and also with multiple small-diameter tubes (called multitubes). Prototype heat exchangers are tested, and the air-side heat transfer, pressure drop, and fan power are measured in a wind tunnel and simulated using a commercial code. The air-side pressure drop and heat transfer coefficient of the multitubes show similar trends to those of the flat-tube heat exchanger if the contact resistance is negligible. The tube spacing of the prototype multitube heat exchangers has a small effect on the pressure drop and heat transfer, but it has a profound effect on the air-side heat transfer performance because of the contact resistance between the tubes and louver fins. The air-side pressure drop agrees well with an empirical correlation for flat tubes.


Sign in / Sign up

Export Citation Format

Share Document