Volume 10: Heat and Mass Transport Processes, Parts A and B
Latest Publications


TOTAL DOCUMENTS

155
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

9780791854969

Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.



Author(s):  
Keyong Cheng ◽  
Xiulan Huai ◽  
Jun Cai ◽  
Zhixiong Guo

In the present study, numerical simulation is carried out for impingement/effusion cooling on the leading edge of a turbine blade similar to an experimental model tested previously. The k-ε turbulence model is used, and simulation parameters are set in accordance with the experimental conditions, including temperature ratio, blowing ratio, and Reynolds number of the main stream. The accuracy and reliability of the simulation is verified by the experimental data, and the influence of various factors on fluid flow and heat transfer is analyzed in detail. The results indicate that the blowing ratio is one critical factor which affects the cooling effectiveness. The greater the blowing ratio is, the higher the cooling effectiveness is. In addition, a staggered-holes arrangement is numerically studied and compared with a line-holes arrangement. The results show that the staggered-holes arrangement has a lower temperature on the outer surface of the leading edge and has improved the cooling effectiveness.



Author(s):  
Vitalii Dubrovskii ◽  
Aleksei Podvysotskii ◽  
Aleksandr Shraiber ◽  
Yaroslav Chudnovsky ◽  
Aleksandr Kozlov

Heat transfer enhancement area attracts the close attention of the researchers and engineers worldwide for the last decades. The most popular techniques nowadays to enhance heat transfer from the surface is to extend it with the fins, studs, etc. or to profile it with the elements of artificial roughness, winglets, dimples, etc. Those types of surface enhancement allow improving the thermal efficiency of the heat transfer equipment with minimal design modification and without significant capital expenses. One of the interesting and promising techniques of the surface profiling is the formation on the surface the arrangement of spherical dimples, which generate intensive vortex structure near the surface, increase flow turbulence and, as a result, enhance heat and mass transfer between a profiled surface and a liquid (or gas) flowing over it [1–3]. In this connection, it is interesting to establish whether surface profiling will also enhance the heat transfer intensity between a liquid film on such a surface and ambient air. Unfortunately, authors were not able to find any publications on this subject in the open domain. At the same time, the investigation of this process could be of great interest for the engineering practice, in particular, for the cooling towers advancement. In the present work, the authors discuss some experimental results obtained for the different profile parameters and flow regimes.



Author(s):  
O. Manca ◽  
S. Nardini ◽  
D. Ricci ◽  
S. Tamburrino

Heat transfer of fluids is very important to many industrial heating or cooling equipments. Convective heat transfer can be enhanced passively by changing flow geometry, boundary conditions or by enhancing the thermal conductivity of the working fluids. An innovative way of improving the fluid thermal conductivity is to introduce suspended small solid nanoparticles in the base fluids. In this paper a numerical investigation on laminar forced convection flow of a water–Al2O3 nanofluid in a duct having an equilateral triangular cross section is performed. The hydraulic diameter is set equal to 1.0×10−2 m. A constant and uniform heat flux on the external surfaces has been applied and the single-phase model approach has been employed. The analysis has been run in steady state regime for a nanoparticle size equal to 38 nm, considering different volume particle concentrations. The CFD code Fluent has been employed in order to solve the tri-dimensional numerical model. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors in pure water are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.



Author(s):  
Yan Li ◽  
Shuchao Zhang ◽  
Ning Mei

In this paper, the anti-gravity flow in the spiral micro-channel on the surface of horizontal tube was visualized by the three-dimensional ultra-microscope system. The coupling relationship between the driving force and the flow was studied by Onsager reciprocal relations. The results show that the formation of the anti-gravity flow in the spiral micro-channel on the surface of horizontal tube is impacted by the combining effect of several factors, such as the capillary pressure, wettability, temperature, and bubbles.



Author(s):  
Kuang-Han Chu ◽  
Ryan Enright ◽  
Evelyn N. Wang

We experimentally investigated pool boiling on microstructured surfaces which demonstrate high critical heat flux (CHF) by enhancing wettability. The microstructures were designed to provide a wide range of well-defined surface roughness to study roughness-augmented wettability on CHF. A maximum CHF of 196 W/cm2 and heat transfer coefficient (h) greater than 80 kW/m2K were achieved. To explain the experimental results, a model extended from a correlation developed by Kandlikar was developed, which well predicts CHF in the complete wetting regime where the apparent liquid contact angle is zero. The model offers a first step towards understanding complex pool boiling processes and developing models to accurately predict CHF on structured surfaces. The insights gained from this work provide design guidelines for new surface technologies with higher heat removal capability that can be effectively used by industry.



Author(s):  
Yanliang Zhang ◽  
Liang Han ◽  
Theodorian Borca-Tasciuc

Scanning thermal microscopy (SThM) is an attractive tool for high spatial resolution thermal characterization with minimal sample preparation.1 SThM measurements are usually performed in contact-mode, which entails multiple tip-sample heat transfer pathways, i.e. across air gap, liquid meniscus, and the solid contact. These hinder the quantification of the sample temperature or thermal properties or result in large uncertainties.2



Author(s):  
M. A. Rahman ◽  
A. M. Jacobi

In the present study, we report the contact angle hysteresis and drainage behavior of water drops on a number of brass surfaces with parallel microgrooves and compare them to the flat baseline surfaces. Parallel micro-grooves with different groove dimensions are fabricated by micro end-milling process without any modification of the surface chemistry. Advancing and receding contact angles in both parallel and perpendicular direction of the grooves and also the drainage behavior of water droplets on the microgrooved surfaces is found to be considerably affected by change in groove geometry parameters. Very high hysteresis is observed for both low (< 0.2) and high aspect ratio (> 0.7) of grooves and also for surfaces with lower groove spacing due to the droplets being in a Wenzel state. For intermediate aspect ratio (0.25–0.70) and larger spacing of the grooves, droplets remain in a Cassie state and the hysteresis is lower in both directions than that on the flat surfaces. Variation of critical sliding angle (angle at the point of incipient sliding of water droplets due to gravity) with groove geometry is investigated for a range of water droplet volume of 15 to 75 μl. Droplets of all volumes are found to slide much more readily on grooved surfaces than when placed on the flat baseline surfaces. Height and spacing of the grooves are also found to have significant influence on the sliding of the water droplets, as critical inclination angle decreased with groove height and increased with groove spacing. The results from this study may be useful in a broad range of applications where water retention plays an important role.



Author(s):  
Gaosheng Wei ◽  
Yusong Liu ◽  
Xinxin Zhang ◽  
Xiaoze Du

This paper engages in experimental measurements on thermal radiative transfer in silica aerogel and its composite insulation materials (xonotlite-aerogel composite and ceramic fibre-aerogel composite). The samples of silica aerogel, xonotlite-type calcium silicate, and ceramic fibre insulation materials are all considered as a semi-transparent medium capable of absorbing, emitting and scattering thermal radiation. The spectral transmittances are then measured at different infrared wavelengths ranging from 2.5 to 25μm with a Fourier transform infrared spectrometer (FTIR), and subsequently used to determine the specific spectral extinction coefficient and the specific Rossland mean extinction coefficient of the sample. The radiative conductivities deduced from the overall thermal conductivities measured with the transient hot-strip (THS) method are compared with the predictions from the diffusion approximation by using the measured spectral extinction coefficient. The results show that the spectral extinction coefficients of the samples are strongly dependent on the wavelength, particularly in the short wavelength regime (<10μm). The total Rossland mean extinction coefficients of the samples are all decreasing with the temperature increasing. The radiative conductivities are found almost proportional to the cubic temperature, and decreases as the sample density increases.



Sign in / Sign up

Export Citation Format

Share Document