scholarly journals Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster ofAspergillus fumigatus

2005 ◽  
Vol 248 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Donald M. Gardiner ◽  
Barbara J. Howlett
Author(s):  
Joana Martins ◽  
Niina Leikoski ◽  
Matti Wahlsten ◽  
Joana Azevedo ◽  
Jorge Antunes ◽  
...  

Cyanobactins are a family of linear and cyclic peptides produced through the post-translational modification of short precursor peptides. Anacyclamides are macrocyclic cyanobactins with a highly diverse sequence that are common in the genus <i>Anabaena</i>. A mass spectrometry-based screening of potential cyanobactin producers led to the discovery of a new prenylated member of this family of compounds, anacyclamide D8P (<b>1</b>), from <i>Sphaerospermopsis</i> sp. LEGE 00249. The anacyclamide biosynthetic gene cluster (<i>acy</i>) encoding the novel macrocyclic prenylated cyanobactin, was sequenced. Heterologous expression of the acy gene cluster in <i>Escherichia</i> <i>coli</i> established the connection between genomic and mass spectrometric data. Unambiguous establishment of the type and site of prenylation required the full structural elucidation of <b>1</b> using Nuclear Magnetic Resonance (NMR), which demonstrated that a forward prenylation occurred on the tyrosine residue. Compound <b>1</b> was tested in pharmacologically or ecologically relevant biological assays and revealed moderate antimicrobial activity towards the fouling bacterium <i>Halomonas aquamarina</i> CECT 5000.<br>


ChemBioChem ◽  
2012 ◽  
Vol 13 (13) ◽  
pp. 1946-1952 ◽  
Author(s):  
Xiaoying Bian ◽  
Fan Huang ◽  
Francis A. Stewart ◽  
Liqiu Xia ◽  
Youming Zhang ◽  
...  

2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


Sign in / Sign up

Export Citation Format

Share Document