scholarly journals Generic Newton polygons for L-functions of (A,B)-exponential sums

2022 ◽  
Vol 78 ◽  
pp. 101980
Author(s):  
Liping Yang ◽  
Hao Zhang
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Wenpeng Zhang ◽  
Xingxing Lv

AbstractThe main purpose of this article is by using the properties of the fourth character modulo a prime p and the analytic methods to study the calculating problem of a certain hybrid power mean involving the two-term exponential sums and the reciprocal of quartic Gauss sums, and to give some interesting calculating formulae of them.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2001 ◽  
Vol 163 ◽  
pp. 13-53 ◽  
Author(s):  
Jörg Brüdern ◽  
Trevor D. Wooley

We establish that almost all natural numbers not congruent to 5 modulo 9 are the sum of three cubes and a sixth power of natural numbers, and show, moreover, that the number of such representations is almost always of the expected order of magnitude. As a corollary, the number of representations of a large integer as the sum of six cubes and two sixth powers has the expected order of magnitude. Our results depend on a certain seventh moment of cubic Weyl sums restricted to minor arcs, the latest developments in the theory of exponential sums over smooth numbers, and recent technology for controlling the major arcs in the Hardy-Littlewood method, together with the use of a novel quasi-smooth set of integers.


2014 ◽  
Vol 13 (06) ◽  
pp. 1450013 ◽  
Author(s):  
Francis N. Castro ◽  
Ivelisse M. Rubio

We present an elementary method to compute the exact p-divisibility of exponential sums of systems of polynomial equations over the prime field. Our results extend results by Carlitz and provide concrete and simple conditions to construct families of polynomial equations that are solvable over the prime field.


2017 ◽  
Vol 296 (1) ◽  
pp. 211-233
Author(s):  
Z. Kh. Rakhmonov ◽  
F. Z. Rakhmonov

Sign in / Sign up

Export Citation Format

Share Document