Guide-Weight method for topology optimization of continuum structures including body forces

2013 ◽  
Vol 75 ◽  
pp. 38-49 ◽  
Author(s):  
Huayang Xu ◽  
Liwen Guan ◽  
Xiang Chen ◽  
Liping Wang
2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Meisam Takalloozadeh ◽  
Gil Ho Yoon

Purpose Body forces are always applied to structures in the form of the weight of materials. In some cases, they can be neglected in comparison with other applied forces. Nevertheless, there is a wide range of structures in civil and mechanical engineering in which weight or other types of body forces are the main portions of the applied loads. The optimal topology of these structures is investigated in this study. Design/methodology/approach Topology optimization plays an increasingly important role in structural design. In this study, the topological derivative under body forces is used in a level-set-based topology optimization method. Instability during the optimization process is addressed, and a heuristic solution is proposed to overcome the challenge. Moreover, body forces in combination with thermal loading are investigated in this study. Findings Body forces are design-dependent loads that usually add complexity to the optimization process. Some problems have already been addressed in density-based topology optimization methods. In the present study, the body forces in a topological level-set approach are investigated. This paper finds that the used topological derivative is a flat field that causes some instabilities in the optimization process. The main novelty of this study is a technique used to overcome this challenge by using a weighted combination. Originality/value There is a lack of studies on level-set approaches that account for design-dependent body forces and the proposed method helps to understand the challenges posed in such methods. A powerful level-set-based approach is used for this purpose. Several examples are provided to illustrate the efficiency of this method. Moreover, the results show the effect of body forces and thermal loading on the optimal layout of the structures.


Sign in / Sign up

Export Citation Format

Share Document