Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico

2012 ◽  
Vol 277 ◽  
pp. 74-80 ◽  
Author(s):  
Angélica Bautista-Cruz ◽  
Rafael F. del Castillo ◽  
Jorge D. Etchevers-Barra ◽  
Ma. del Carmen Gutiérrez-Castorena ◽  
Aurelio Baez
2020 ◽  
Vol 66 (6) ◽  
pp. 700-711
Author(s):  
Jorge Mendoza-Vega ◽  
Victor M Ku-Quej ◽  
Ingmar Messing ◽  
Juan Carlos Pérez-Jiménez

Abstract The tropical montane cloud forest is one of the most biodiverse ecosystems on Earth and is one of the areas most threatened by anthropogenic disturbance. This study assessed the temporal impact on soil properties (organic carbon, total nitrogen, cation exchange capacity, bulk density) following establishment of native tree species in two degraded tropical montane cloud forest areas with different soil types and land-use intensities in south-east Mexico. In Pueblo Nuevo, Chiapas, Pinus chiapensis and Alnus spp. were established at two sites with humic Nitisols with low and moderate disturbance levels, respectively. In Xalapa, Veracruz, plum pine (Podocarpus matudae), American hornbeam (Carpinus caroliniana), Oaxaca walnut (Juglans pyriformis Liebm.), and sweetgum (Liquidambar styraciflua) were established on a grassland-covered humic Andosol with a high level of disturbance. After 16 years, soil properties had generally improved, although in the initial years after planting, the values declined, indicating a possible negative impact because of disturbance during tree establishment. Land-use intensity prior to tree establishment influenced the level of recovery in soil properties. The Pueblo Nuevo sites, with low to moderate disturbance levels, regained soil quality faster than the highly disturbed Xalapa site, despite better initial soil quality in the latter.


2015 ◽  
Vol 27 (3) ◽  
pp. 219-232
Author(s):  
Antônio W. O. Rocha Junior ◽  
Guilherme A. H. A. Loureiro ◽  
Quintino R. Araujo ◽  
George A. Sodré ◽  
Arlicélio Q. Paiva ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Melku Dagnachew ◽  
Awdenegest Moges ◽  
Asfaw Kebede ◽  
Adane Abebe

Land degradation is a global negative environmental process that causes the decline in the productivity of land resources’ capacity to perform their functions. Though soil and water conservation (SWC) technologies have been adopted in Geshy subcatchment, their effects on soil quality were limitedly studied. The study was conducted to evaluate the effects SWC measures on soil quality indicators in Geshy subcatchment, Gojeb River Catchment, Ethiopia. A total of 54 soil samples (two treatments–farmlands with and without SWC measures ∗ three slope classes ∗ three terrace positions ∗ three replications) were collected at a depth of 20 cm. Statistical differences in soil quality indicators were analyzed using multivariate analysis of variance (ANOVA) following the general linear model procedure of SPSS Version 20.0 for Windows. Means that exhibited significant differences were compared using Tukey’s honest significance difference at 5% probability level. The studied soils are characterized by low bulk density, slightly acidic with clay and clay loam texture. The results revealed that farmlands with SWC measures had significantly improved soil physical (silt and clay fractions, and volumetric soil water content (VSWC)) and chemical (pH, SOC, TN, C : N ratio, and Av. phosphorus) quality indicators as compared with farmlands without SWC measures. The significantly higher VSWC, clay, SOC, TN, C : N ratio, and Av. P at the bottom slope classes and terrace positions could be attributed to the erosion reduction and deposition effects of SWC measures. Generally, the status of the studied soils is low in SOC contents, TN, C : N ratio, and Av. P (deficient). Thus, integral use of both physical and biological SWC options and agronomic interventions would have paramount importance in improving soil quality for better agricultural production and productivity.


2009 ◽  
Vol 40 (1-6) ◽  
pp. 419-434 ◽  
Author(s):  
Evangelia Vavoulidou ◽  
Elisabeth Avramides ◽  
Martin Wood ◽  
Polykarpos Lolos

2019 ◽  
Vol 265 ◽  
pp. 359-369 ◽  
Author(s):  
Paulo R.L. Bittencourt ◽  
Fernanda de V. Barros ◽  
Cleiton B. Eller ◽  
Caroline S. Müller ◽  
Rafael S. Oliveira

2020 ◽  
Vol 12 (4) ◽  
pp. 148
Author(s):  
S. Muwanga ◽  
R. Onwonga ◽  
S. O. Keya ◽  
E. Komutunga

Uganda Government embarked on promoting sedentary agriculture in Karamoja agro-pastoral semi-arid livelihood zone, which experience rapid environmental and high soil quality (SQ) decline. However, studies on sedentary agriculture’s impact on soil quality using farmer’s knowledge is limited. Consequently, a survey was carried out in Karamoja (Iriiri, Matany Sub-counties of Napak of districts and Rengen sub-county of Kotido) to determine the soil quality indicator parameters based on the farmers knowledge in order to build a local soil knowledge data base to better inform sustainable land use strategies. Using a semi-structured questionnaire, forty indigenous farmers per sub-county, were interviewed between August and September, 2015. The study took into account the social demographic characteristics of the people, farming enterprises, methods of crops production, crops yields trends, causes of the perceived yields trends and soil quality indicators. Prospects of developing Karamoja indigenous knowledge data base lies in visible feature that predict soil quality. Farmers used 36 parameters to determine SQ. The parameters were clustered into five categories; soil, crop, biological, environmental and management each category contributing to 42, 19,14,8 and 17% of the total indicators, respectively. The relationship between age group and the perceived indicators of soil fertility was statistically significant (p-value = 0.045) with the majority stating that they use either soil colour, soil depth or soil texture to express the fertility of soil. The farmer’s soil quality indicators assessed in this study, is important in establishing indigenous-scientific hybrid knowledge data base to enhance soil fertility maintenance and better inform policy makers and other stakeholders on development of sustainable land use strategies.


Sign in / Sign up

Export Citation Format

Share Document