Soluble guanylate cyclase activation by nitric oxide

2018 ◽  
Vol 120 ◽  
pp. S12
Author(s):  
Michael A. Marletta
1981 ◽  
Vol 59 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Carl A. Gruetter ◽  
Philip J. Kadowitz ◽  
Louis J. Ignarro

Relaxation by nitroglycerin, sodium nitrite, and amyl nitrite of bovine coronary arterial smooth muscle was inhibited by the oxidant methylene blue. Methylene blue also inhibited activation of bovine coronary arterial soluble guanylate cyclase by nitroglycerin, which required addition of cysteine. At concentrations less than 10 mM, sodium nitrite required the addition of one of several thiols or ascorbate to activate guanylate cyclase from bovine coronary artery. Guanylate cyclase activation by large amounts (50 μL) of saturated amyl nitrite gas did not require, but was enhanced by, the addition of thiols or ascorbate. However, similar to sodium nitrite, guanylate cyclase activation by smaller amounts (5 μL) of saturated amyl nitrite gas did require the addition of one of various thiols or ascorbate. Methylene blue markedly inhibited guanylate cyclase activation by sodium nitrite in the presence of cysteine or ascorbate and similarly inhibited enzyme activation by amyl nitrite either in the absence or presence of cysteine or ascorbate. These data support the hypothesis that nitrates and nitrites relax vascular smooth muscle by stimulating cyclic GMP formation. The results further suggest that, similar to relaxation and guanylate cyclase activation by nitroso-containing compounds, relaxation and enzyme activation by nitrates and nitrites may involve the formation of nitric oxide or complexes of nitric oxide as active intermediates.


2005 ◽  
Vol 5 (Suppl 1) ◽  
pp. S1
Author(s):  
Elizabeth M Boon ◽  
Stephen PL Cary ◽  
Shirley H Huang ◽  
Jonathan A Winger ◽  
Michael A Marletta

1992 ◽  
Vol 262 (5) ◽  
pp. L560-L565 ◽  
Author(s):  
H. A. Omar ◽  
M. S. Wolin

Our laboratory has previously described in isolated 1- to 4-mm calf pulmonary arteries, an endothelium-independent contraction to hypoxia that appears to involve the removal of a H2O2-elicited guanosine 3',5'-cyclic monophosphate (cGMP)-mediated relaxation. In this study, we examined the effects of changes in O2 tension (PO2) on isolated endothelium-intact and endothelium-denuded calf pulmonary resistance arteries of approximately 200 microns in diameter. Resistance arteries precontracted with U46619 were found to undergo a contraction when exposed to a PO2 of 24–27 Torr (hypoxia) from a Po2 of 150 Torr (O2 atmosphere). This contraction was significantly larger in endothelium-intact than endothelium-removed arteries. In the intact artery, 30 microM nitro-L-arginine (NLA), an inhibitor of the biosynthesis of nitric oxide-like activators of guanylate cyclase, increased tone under O2 atmosphere and reduced the contraction to hypoxia to the level observed in the endothelium-removed artery. Reoxygenation caused a relaxation, which was not dependent on the endothelium or inhibited by NLA. The inhibitor of guanylate cyclase activation, LY83583 (10 microM), increased tone under O2 atmosphere, eliminated the contraction to hypoxia, and inhibited the relaxation to reoxygenation, whereas indomethacin (10 microM) did not alter these responses. Thus modulation of a cGMP mechanism, not involving the endothelium or metabolism of arginine, is a primary mediator of responses to changes in O2 tension, and the endothelium appears to cause an enhancement of the contraction to hypoxia via suppression by hypoxia of the tonic generation of an arginine-derived relaxing factor.


1996 ◽  
Vol 270 (3) ◽  
pp. C778-C785 ◽  
Author(s):  
N. Suttorp ◽  
S. Hippenstiel ◽  
M. Fuhrmann ◽  
M. Krull ◽  
T. Podzuweit

Regulation of endothelial permeability is poorly understood. Previous studies have shown that endothelial cells contain phosphodiesterase (PDE) isoenzymes II-IV and that simultaneous adenylate cyclase activation and/or PDE inhibition blocked endothelial hyperpermeability (J.Clin.Invest. 91: 1421-1428, 1993). We now focused on a possible role for guanosine 3',5'-cyclic monophosphate (cGMP)-dependent mechanisms and studied H2O2-exposed porcine pulmonary artery endothelial cell monolayers. Pretreatment of cells with different nitric oxide (NO) donors or atrial natriuretic peptide (ANP) increased endothelial cGMP-content severalfold and blocked H2O2-related effects on permeability; opposite results were obtained with a NO synthase inhibitor. Determination of cGMP degradation in nitroprusside-exposed endothelial cells identified PDE II as the major cGMP metabolizing pathway, whereas PDE III and IV contributed little or nothing. Inhibition of PDE II reduced H2O2-related endothelial hyperpermeability, an effect that could be enhanced synergistically by simultaneous guanylate cyclase activation. In summary, these studies indicate that cGMP-dependent mechanisms (NO donors, ANP, and dibutyryl-cGMP) blocked H2O2-related increases in endothelial permeability. The major cGMP degrading pathway in endothelial cells was PDE II, thereby substituting the missing PDE V in these cells. Simultaneous guanylate cyclase activation and/or PDE II inhibition may be a valuable approach to treat endothelial hyperpermeability.


Sign in / Sign up

Export Citation Format

Share Document