scholarly journals Nitric Oxide–Independent Soluble Guanylate Cyclase Activation Improves Vascular Function and Cardiac Remodeling in Sickle Cell Disease

2018 ◽  
Vol 58 (5) ◽  
pp. 636-647 ◽  
Author(s):  
Karin P. Potoka ◽  
Katherine C. Wood ◽  
Jeffrey J. Baust ◽  
Marta Bueno ◽  
Scott A. Hahn ◽  
...  
Nitric Oxide ◽  
2014 ◽  
Vol 42 ◽  
pp. 138
Author(s):  
Karin Potoka ◽  
Christina Mucci ◽  
Stephanie Mutchler ◽  
Marta Bueno ◽  
Eva Becker-Pelster ◽  
...  

2019 ◽  
Vol 244 (2) ◽  
pp. 132-146 ◽  
Author(s):  
Nicola Conran ◽  
Lidiane Torres

Sickle cell disease (SCD) is an inherited disease caused by the production of abnormal hemoglobin (Hb) S, whose deoxygenation-induced polymerization results in red blood cell (RBC) sickling and numerous pathophysiological consequences. SCD affects approximately 300,000 newborns worldwide each year and is associated with acute and chronic complications, including frequent painful vaso-occlusive episodes that often require hospitalization. Chronic intravascular hemolysis in SCD significantly reduces vascular nitric oxide (NO) bioavailability, consequently decreasing intracellular signaling via cyclic guanosine monophosphate (cGMP), in turn diminishing vasodilation and contributing to the inflammatory mechanisms that trigger vaso-occlusive processes. Oxidative stress may further reduce NO bioavailability in SCD and can oxidize the intracellular enzyme target of NO, soluble guanylate cyclase (sGC), rendering it inactive. Increasing intracellular cGMP-dependent signaling constitutes an important pharmacological therapeutic approach for SCD with a view to augmenting vasodilation, and reducing inflammatory mechanisms, as well as for increasing the production of anti-polymerizing fetal Hb in erythroid cells. Pharmacological agents under pre-clinical and clinical investigation for SCD include NO-based therapeutics to augment NO bioavailability, as well as heme-dependent sGC stimulators and heme-independent sGC activators that directly stimulate native and oxidized sGC, respectively, therefore bypassing the need for vascular NO delivery. Additionally, the phosphodiesterases (PDEs) that degrade intracellular cyclic nucleotides with specific cellular distributions are attractive drug targets for SCD; PDE9 is highly expressed in hematopoietic cells, making the use of PDE9 inhibitors, originally developed for use in neurological diseases, a potential approach that could rapidly amplify intracellular cGMP concentrations in a relatively tissue-specific manner. Impact statement Sickle cell disease (SCD) is one of the most common inherited diseases and is associated with a reduced life expectancy and acute and chronic complications, including frequent painful vaso-occlusive episodes that often require hospitalization. At present, treatment of SCD is limited to hematopoietic stem cell transplant, transfusion, and limited options for pharmacotherapy, based principally on hydroxyurea therapy. This review highlights the importance of intracellular cGMP-dependent signaling pathways in SCD pathophysiology; modulation of these pathways with soluble guanylate cyclase (sGC) stimulators or phosphodiesterase (PDE) inhibitors could potentially provide vasorelaxation and anti-inflammatory effects, as well as elevate levels of anti-sickling fetal hemoglobin.


2001 ◽  
Vol 98 (26) ◽  
pp. 15215-15220 ◽  
Author(s):  
M. Aslan ◽  
T. M. Ryan ◽  
B. Adler ◽  
T. M. Townes ◽  
D. A. Parks ◽  
...  

1981 ◽  
Vol 59 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Carl A. Gruetter ◽  
Philip J. Kadowitz ◽  
Louis J. Ignarro

Relaxation by nitroglycerin, sodium nitrite, and amyl nitrite of bovine coronary arterial smooth muscle was inhibited by the oxidant methylene blue. Methylene blue also inhibited activation of bovine coronary arterial soluble guanylate cyclase by nitroglycerin, which required addition of cysteine. At concentrations less than 10 mM, sodium nitrite required the addition of one of several thiols or ascorbate to activate guanylate cyclase from bovine coronary artery. Guanylate cyclase activation by large amounts (50 μL) of saturated amyl nitrite gas did not require, but was enhanced by, the addition of thiols or ascorbate. However, similar to sodium nitrite, guanylate cyclase activation by smaller amounts (5 μL) of saturated amyl nitrite gas did require the addition of one of various thiols or ascorbate. Methylene blue markedly inhibited guanylate cyclase activation by sodium nitrite in the presence of cysteine or ascorbate and similarly inhibited enzyme activation by amyl nitrite either in the absence or presence of cysteine or ascorbate. These data support the hypothesis that nitrates and nitrites relax vascular smooth muscle by stimulating cyclic GMP formation. The results further suggest that, similar to relaxation and guanylate cyclase activation by nitroso-containing compounds, relaxation and enzyme activation by nitrates and nitrites may involve the formation of nitric oxide or complexes of nitric oxide as active intermediates.


2006 ◽  
Vol 291 (3) ◽  
pp. L337-L344 ◽  
Author(s):  
Christopher J. Mingone ◽  
Sachin A. Gupte ◽  
Joseph L. Chow ◽  
Mansoor Ahmad ◽  
Nader G. Abraham ◽  
...  

Protoporphyrin IX is an activator of soluble guanylate cyclase (sGC), but its role as an endogenous regulator of vascular function through cGMP has not been previously reported. In this study we examined whether the heme precursor δ-aminolevulinic acid (ALA) could regulate vascular force through promoting protoporphyrin IX-elicited activation of sGC. Exposure of endothelium-denuded bovine pulmonary arteries (BPA) in organoid culture to increasing concentrations of the heme precursor ALA caused a concentration-dependent increase in BPA epifluorescence, consistent with increased tissue protoporphyrin IX levels, associated with decreased force generation to increasing concentrations of serotonin. The force-depressing actions of 0.1 mM ALA were associated with increased cGMP-associated vasodilator-stimulated phosphoprotein (VASP) phosphorylation and increased sGC activity in homogenates of BPA cultured with ALA. Increasing iron availability with 0.1 mM FeSO4 inhibited the decrease in contraction to serotonin and increase in sGC activity caused by ALA, associated with decreased protoporphyrin IX and increased heme. Chelating endogenous iron with 0.1 mM deferoxamine increased the detection of protoporphyrin IX and force depressing activity of 10 μM ALA. The inhibition of sGC activation with the heme oxidant 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) attenuated the force depressing actions of an NO donor without altering the actions of ALA. Thus control of endogenous formation of protoporphyrin IX from ALA by the availability of iron is potentially a novel physiological mechanism of controlling vascular function through regulating the activity of sGC.


Sign in / Sign up

Export Citation Format

Share Document