scholarly journals Controlling emissions from an ocean-going container vessel with a wet scrubber system

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121323
Author(s):  
Jiacheng Yang ◽  
Tianbo Tang ◽  
Yu Jiang ◽  
Georgios Karavalakis ◽  
Thomas D. Durbin ◽  
...  
Keyword(s):  
2011 ◽  
Vol 11 (5) ◽  
pp. 508-518 ◽  
Author(s):  
Lien-Te Hsieh ◽  
Ya-Fen Wang ◽  
Pomin Li ◽  
Kuan-Chung Chen

2018 ◽  
Vol 27 (1) ◽  
pp. 85
Author(s):  
José A. Acaro R ◽  
Jeannie L. Quispe E. ◽  
Mali I. Salas D.

Nuestro equipo en esta oportunidad hizo una simulación de una torre de lavado, la cual la aplicamos en el reactor UASB, a manera de escala construimos una torre de lavado compuesta por difusores, una cama de sólidos hecha de material de esponja, un tubo de acrílico y todas las conexiones que conducen el biogás con H2S. Los componentes a eliminar y/o remover fueron los gases que salen del reactor, en especial del H2S (gas odorífero y toxico que a grandes concentraciones pude llevar a la muerte y como resultado de sus reacciones con el ambiente puede causar daños en las estructuras con la cual este en contacto) mediante la oxidación con el oxígeno disuelto que proveen las microalgas presentes en el agua de la laguna terciara utilizada. Esta torre de lavado la montamos en las instalaciones de CITRAR‐UNI con el permiso del operador y vimos el comportamiento que tiene esta torre, mediante los monitoreos de oxígeno disuelto, temperatura, pH y sulfatos que realizamos durante tres semanas de monitoreo. Como resultados obtuvimos que la torre de lavado sí oxidaba y removía la contracción de H2S, ya que cuando pasaba el tiempo se consumía el oxígeno disuelto, además de esto también en el monitoreo de sulfatos pudimos observar un aumento de este parámetro es decir la torre si estaba consumiendo en H2S, y por esta razón también disminuyo el olor fétido que produce este gas. Palabras clave.- Torre de lavado, reactor UASB, remoción de sulfuro de hidrógeno. ABSTRACT The present work reports the simulation of a wet scrubber coupled to an UASB reactor. The scrubber consisted of baffles, packed bed of sponge material, an acrylic tube and all the connections necessary to bring the H2S‐ladden biogas. The purpose of the equipment is to eliminate some of the gases coming out of the reactor, through their oxidation by the dissolved oxygen provided by the microalgae present in the water from the tertiary lagoon. Hydrogen sulfide is a foul‐ smelling and toxic gas which can cause death at high concentrations, and can also cause damage to the structures with which it comes into contact. The scrubber was installed on the site of CITRAR‐UNI and the behavior of the equipment was monitored during three weeks by following the temperature, pH and the concentrations of sulfates and dissolved oxygen. The results have shown that the scrubber was effectively an oxidizing environment which was removing H2S, since the dissolved oxygen was actually consumed gradually. It was also observed that the sulfate concentration was increasing, indicating a consumption of H2S, which was also confirmed by a reduction in the odor of the gas. Keywords.- scrubber, UASB reactor, hydrogen sulfide removal .


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Thi-Cuc Le ◽  
Gung-Hwa Hong ◽  
Guan-Yu Lin ◽  
Ziyi Li ◽  
David Y. H. Pui ◽  
...  

AbstractA laboratory scale, 1.0 CMM (m3 min− 1) wet scrubber packed with water-absorbing honeycomb material (HWS) with a very large geometric surface area of 480 m2 m− 3 and a low pressure drop developed in our previous study was shown to achieve a very high removal efficiency for acidic gases but there were no long-term test data. In this study, the HWS scaled up to operate at a 100 CMM flow rate was tested for removing mixed acidic gases at a semiconductor fab for a very long period of 3.5 yr. Results showed that the removal efficiency for the mixed gases emitted from the fab always maintained as high as > 95% for HF, CH3COOH, HCl, HNO3, HNO2, and H2SO4 with the inlet concentrations ranging from supper-ppmv to sub-ppmv, during a 3.5-yr period. With water jet cleaning of the honeycomb modules once per year, the pressure drop of the HWS remained to be low at 0.5–0.8 cm H2O, indicating minimal scaling in the HWS. Additionally, the predicted height and removal efficiencies of the HWS were very close to the experimental data. The excellent long-term performance of the HWS warrants its potential applications in many areas in which liquid absorption is the preferred treatment method and the theoretical equations can facilitate the design of the HWS.


Fuel ◽  
2020 ◽  
Vol 270 ◽  
pp. 117491 ◽  
Author(s):  
Renata Krzyżyńska ◽  
Zbyszek Szeliga ◽  
Lukas Pilar ◽  
Karel Borovec ◽  
Paweł Regucki

1999 ◽  
Vol 30 ◽  
pp. S693-S694
Author(s):  
K. Vaaraslahti ◽  
A. Laitinen
Keyword(s):  

1974 ◽  
Vol 8 (9) ◽  
pp. 779-779
Author(s):  
Donald Carlton
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document