scholarly journals Rear foot kinematics when wearing lateral wedge insoles and foot alignment influence the effect of knee adduction moment for medial knee osteoarthritis

2017 ◽  
Vol 57 ◽  
pp. 177-181 ◽  
Author(s):  
Tomonori Sawada ◽  
Kenji Tanimoto ◽  
Kazuki Tokuda ◽  
Yoshitaka Iwamoto ◽  
Yuta Ogata ◽  
...  
2021 ◽  
pp. 026921552199363
Author(s):  
Martin Schwarze ◽  
Leonie P Bartsch ◽  
Julia Block ◽  
Merkur Alimusaj ◽  
Ayham Jaber ◽  
...  

Objective: To compare biomechanical and clinical outcome of laterally wedged insoles (LWI) and an ankle-foot orthosis (AFO) in patients with medial knee osteoarthritis. Design: Single-centre, block-randomized, cross-over controlled trial. Setting: Outpatient clinic. Subjects: About 39 patients with symptomatic medial knee osteoarthritis. Interventions: Patients started with either LWI or AFO, determined randomly, and six weeks later changed to the alternative. Main measures: Change in the 1st maximum of external knee adduction moment (eKAM) was assessed with gait analysis. Additional outcomes were other kinetic and kinematic changes and the patient-reported outcomes EQ-5D-5L, Oxford Knee Score (OKS), American Knee Society Clinical Rating System (AKSS), Hannover Functional Ability Questionnaire – Osteoarthritis and knee pain. Results: Mean age (SD) of the study population was 58 (8) years, mean BMI 30 (5). Both aids significantly improved OKS (LWI P = 0.003, AFO P = 0.001), AKSS Knee Score (LWI P = 0.01, AFO P = 0.004) and EQ-5D-5L Index (LWI P = 0.001, AFO P = 0.002). AFO reduced the 1st maximum of eKAM by 18% ( P < 0.001). The LWI reduced both maxima by 6% ( P = 0.02, P = 0.03). Both AFO and LWI reduced the knee adduction angular impulse (KAAI) by 11% ( P < 0.001) and 5% ( P = 0.05) respectively. The eKAM (1st maximum) and KAAI reduction was significantly larger with AFO than with LWI ( P = 0.001, P = 0.004). Conclusions: AFO reduces medial knee load more than LWI. Nevertheless, no clinical superiority of either of the two aids could be shown.


2017 ◽  
Vol 41 (6) ◽  
pp. 587-594 ◽  
Author(s):  
Andreas Brand ◽  
Isabella Klöpfer-Krämer ◽  
Mario Morgenstern ◽  
Inga Kröger ◽  
Björn Michel ◽  
...  

Background: Valgus bracing in medial knee osteoarthritis aims to improve gait function by reducing the loading of the medial compartment. Orthosis composition and optimal adjustment is essential to achieve biomechanical and clinical effectiveness. Objectives: To investigate biomechanical functionality during gait, pain relief and compliance in patients with knee osteoarthritis using a lightweight adjustable knee unloader orthosis. Study Design: Prospective observational clinical trial. Methods: Instrumented gait analysis in 22 patients with unilateral medial knee osteoarthritis was performed after a 2-week orthosis acclimatisation period. Kinematics and kinetics during gait as well as force transmission from the orthosis to the knee were analysed. Measurements were performed without, at individualised and at reduced orthosis setting. The assessment was supplemented by patient-related pain sensation and compliance questionnaires. Results: Orthosis wear significantly reduced the knee adduction moment by up to 20% depending on orthosis adjustment, whereas pain sensation was significantly reduced by 16%. A significant positive correlation was found between force transmissions and knee adduction moment as well as for frontal knee angle. Compliance was good with a main daily use of 2–6 h. Conclusion: The orthosis provides significant biomechanical improvements, pain relief and good patient compliance. Patients had a biomechanical benefit for the individualised and reduced orthosis adjustments. Clinical relevance In patients with medial knee osteoarthritis, a lightweight medial unloader orthosis effectively reduced external knee adduction moment and pain sensation during daily activities. Thus, use of lightweight orthoses effectively supports conservative treatment in medial knee osteoarthritis.


2018 ◽  
Vol 57 ◽  
pp. 150-158 ◽  
Author(s):  
Rosie E. Richards ◽  
Josien C. van den Noort ◽  
Martin van der Esch ◽  
Marjolein J. Booij ◽  
Jaap Harlaar

2009 ◽  
Vol 33 (2) ◽  
pp. 107-116 ◽  
Author(s):  
Robert J. Butler ◽  
Joaquin A. Barrios ◽  
Todd Royer ◽  
Irene S. Davis

The purpose of this study was to examine the effects of laterally wedged foot orthotic devices, used to treat knee osteoarthritis, on frontal plane mechanics at the rearfoot and hip during walking. Thirty individuals with diagnosed medial knee osteoarthritis were recruited for this study. Three dimensional kinematics and kinetics were recorded as the subjects walked in the laboratory at an intentional walking speed. Peak eversion, eversion excursion and peak eversion moment were increased while the peak knee adduction moment was reduced in the laterally wedged orthotic condition compared to the no wedge condition. In contrast, no changes were observed in the variables of interest at the hip. There was no significant relationship between the change in the peak frontal plane moment at the rearfoot and change in the peak frontal plane moment at the knee or hip as a result of the lateral wedge. Laterally wedged foot orthotic devices, used to treat knee osteoarthritis, do not influence hip mechanics. However, they do result in increased rearfoot eversion and inversion moment. Therefore, a full medical screen of the foot should occur before laterally wedged foot orthotic devices are prescribed as a treatment for knee osteoarthritis.


The Knee ◽  
2010 ◽  
Vol 17 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Nasim Foroughi ◽  
Richard M. Smith ◽  
Angela K. Lange ◽  
Michael K. Baker ◽  
Maria A. Fiatarone Singh ◽  
...  

2015 ◽  
Vol 40 (4) ◽  
pp. 447-453 ◽  
Author(s):  
Eric M Lamberg ◽  
Robert Streb ◽  
Marc Werner ◽  
Ian Kremenic ◽  
James Penna

Background: Knee osteoarthritis is a prevalent disease. Unloading the affected compartment using a brace is a treatment option. Objectives: To determine whether a decompressive knee brace alters loading in medial knee osteoarthritis following 2 and 8 weeks of use. Study design: Within subjects; pre- and post-testing. Methods: A total of 15 individuals with medial knee osteoarthritis attended four sessions: baseline, fitting, 2 weeks after fitting (post), and 8 weeks after fitting (final). A gait analysis was performed at baseline (without knee brace), post and final. Knee adduction impulse, first and second peak knee adduction moment, knee motion, and walking velocity were calculated. Participants also recorded hours and steps taken while wearing the brace. Results: On average, the brace was worn for more than 6 h/day. Through use of repeated-measures analysis of variance, it was determined that the knee adduction impulse and second peak knee adduction moment were reduced ( p < 0.05) at post and final compared to baseline (36% and 34% reduction in knee adduction impulse, 26% reduction in second peak knee adduction moment for post and final, respectively). Furthermore, participants walked faster with increased knee motion during stance. Conclusion: The studied decompressive brace was effective in reducing potentially detrimental forces at the knee—knee adduction impulse and second peak knee adduction moment during the stance phase of gait. Clinical relevance The data from this study suggest that use of a medial unloading brace can reduce potentially detrimental adduction moments at the knee. Clinicians should use this evidence to advocate for use of this noninvasive treatment for people presenting with medial knee osteoarthritis.


2009 ◽  
Vol 61 (4) ◽  
pp. 451-458 ◽  
Author(s):  
Boon-Whatt Lim ◽  
Georgina Kemp ◽  
Ben Metcalf ◽  
Tim V. Wrigley ◽  
Kim L. Bennell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document