force transmission
Recently Published Documents


TOTAL DOCUMENTS

1016
(FIVE YEARS 285)

H-INDEX

64
(FIVE YEARS 9)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Xian Shi ◽  
Xiaoqiao He ◽  
Ligang Sun ◽  
Xuefeng Liu

Abstract Networks based on carbon nanotube (CNT) have been widely utilized to fabricate flexible electronic devices, but defects inevitably exist in these structures. In this study, we investigate the influence of the CNT-unit defects on the mechanical properties of a honeycomb CNT-based network, super carbon nanotube (SCNT), through molecular dynamics simulations. Results show that tensile strengths of the defective SCNTs are affected by the defect number, distribution continuity and orientation. Single-defect brings 0 ~ 25% reduction of the tensile strength with the dependency on defect position and the reduction is over 50% when the defect number increases to three. The distribution continuity induces up to 20% differences of tensile strengths for SCNTs with the same defect number. A smaller arranging angle of defects to the tensile direction leads to a higher tensile strength. Defective SCNTs possess various modes of stress concentration with different concentration degrees under the combined effect of defect number, arranging direction and continuity, for which the underlying mechanism can be explained by the effective crack length of the fracture mechanics. Fundamentally, the force transmission mode of the SCNT controls the influence of defects and the cases that breaking more force transmission paths cause larger decreases of tensile strengths. Defects are non-negligible factors of the mechanical properties of CNT-based networks and understanding the influence of defects on CNT-based networks is valuable to achieve the proper design of CNT-based electronic devices with better performances. Graphical Abstract


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 110
Author(s):  
Amit Kumar ◽  
Xu Zhang ◽  
Oscar Vadas ◽  
Fisentzos A. Stylianou ◽  
Nicolas Dos Santos Pacheco ◽  
...  

A model for parasitic motility has been proposed in which parasite filamentous actin (F-actin) is attached to surface adhesins by a large component of the glideosome, known as the glideosome-associated connector protein (GAC). This large 286 kDa protein interacts at the cytoplasmic face of the plasma membrane with the phosphatidic acid-enriched inner leaflet and cytosolic tails of surface adhesins to connect them to the parasite actomyosin system. GAC is observed initially to the conoid at the apical pole and re-localised with the glideosome to the basal pole in gliding parasite. GAC presumably functions in force transmission to surface adhesins in the plasma membrane and not in force generation. Proper connection between F-actin and the adhesins is as important for motility and invasion as motor operation itself. This notion highlights the need for new structural information on GAC interactions, which has eluded the field since its discovery. We have obtained crystals that diffracted to 2.6–2.9 Å for full-length GAC from Toxoplasma gondii in native and selenomethionine-labelled forms. These crystals belong to space group P212121; cell dimensions are roughly a = 119 Å, b = 123 Å, c = 221 Å, α = 90°, β = 90° and γ = 90° with 1 molecule per asymmetric unit, suggesting a more compact conformation than previously proposed


2022 ◽  
Vol 23 (2) ◽  
pp. 871
Author(s):  
Joseph D. Powers ◽  
Natalie J. Kirkland ◽  
Canzhao Liu ◽  
Swithin S. Razu ◽  
Xi Fang ◽  
...  

Dilated cardiomyopathy (DCM) is a life-threatening form of heart disease that is typically characterized by progressive thinning of the ventricular walls, chamber dilation, and systolic dysfunction. Multiple mutations in the gene encoding filamin C (FLNC), an actin-binding cytoskeletal protein in cardiomyocytes, have been found in patients with DCM. However, the mechanisms that lead to contractile impairment and DCM in patients with FLNC variants are poorly understood. To determine how FLNC regulates systolic force transmission and DCM remodeling, we used an inducible, cardiac-specific FLNC-knockout (icKO) model to produce a rapid onset of DCM in adult mice. Loss of FLNC reduced systolic force development in single cardiomyocytes and isolated papillary muscles but did not affect twitch kinetics or calcium transients. Electron and immunofluorescence microscopy showed significant defects in Z-disk alignment in icKO mice and altered myofilament lattice geometry. Moreover, a loss of FLNC induces a softening myocyte cortex and structural adaptations at the subcellular level that contribute to disrupted longitudinal force production during contraction. Spatially explicit computational models showed that these structural defects could be explained by a loss of inter-myofibril elastic coupling at the Z-disk. Our work identifies FLNC as a key regulator of the multiscale ultrastructure of cardiomyocytes and therefore plays an important role in maintaining systolic mechanotransmission pathways, the dysfunction of which may be key in driving progressive DCM.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yongquan Wang ◽  
Tianfu Li ◽  
Kaifa Dong ◽  
Zhengxing Guo ◽  
Jing Fu

The combined tower crane foundation is widely used in construction sites due to its advanced utilization rate. However, the immature construction method, unavoidable construction deviation during the installation process, and influence of the surrounding construction generally cause the lattice columns to tilt. As the main force transmission components of the tower crane foundation, once its stress and deformation exceed the limit, the entire tower crane will collapse, which requires engineers to accurately control its safety. Therefore, the objective of the work reported here was to study the safety of the lattice columns during operation. A geometrically nonlinear finite element model was utilized to simulate the strain and deformation capacity of tower cranes under various working conditions, including vertical and inclined working conditions, operation and shutdown conditions, and conditions with the tower boom in different orientations. In addition, this study combines the simulation with the on-site measurement. The results of on-site measurement were also recorded to verify the correctness of the proposed calculation model. It was concluded that the inclination of lattice columns has a significant effect on the deformation and stress of the lattice columns of the tower crane foundation, and the measured data and the calculated data trend are consistent. Engineers can accurately judge the safety of the lattice columns of the tower crane foundation through geometric nonlinear finite element model analysis and on-site monitoring to avoid the failure of the lattice columns and the occurrence of safety accidents.


2022 ◽  
pp. 1-37
Author(s):  
Kuan-Lun Hsu ◽  
Tung-Hsin Pan ◽  
Long-Iong Wu

Abstract The paper presents an analytical approach for designing grooved cam mechanisms with a modified arrangement of the common translating follower. That is, an intermediate link having three rollers is added between the cam and the common follower. On the basis of an existing cam mechanism with a common roller follower, an intermediate link that has three rollers is added between the cam and the common follower. Such a cam mechanism has two set of profile and can create multiple contact points between the cam and the follower at any instant. The two sets of profiles of such a cam mechanism can serve as the grooved types. Since the follower has three rollers that can simultaneously contact the cam at any instant, it can be positive driven along the guided groove of cam contour. The contact forces and contact stresses of such cam mechanisms are analyzed to illustrate the advantage of spreading force transmission and reducing contact stress of this uncommon follower. The obtained results indicate that the contact stress at the surface of the cam and the follower for such a cam mechanism can be reduced by 30% to 47% in comparison to those of cam mechanism with a common translating roller follower. In conclusion, the cam mechanism with a translating follower having an added ternary-roller intermediate link can be a preferable choice for the applications that follower is against heavy loads or move at high speed.


2022 ◽  
Vol 120 (1) ◽  
pp. 012903
Author(s):  
Gih-Keong Lau ◽  
Fa-Yi Chen ◽  
Zhe-Xian Ren

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Renata Woźniacka ◽  
Łukasz Oleksy ◽  
Agnieszka Jankowicz-Szymańska ◽  
Anna Mika ◽  
Renata Kielnar ◽  
...  

The foot arches are responsible for proper foot loading, optimal force distribution, and transmission throughout the soft tissues. Since the foot arch is an elastic structure, able to adapt to forces transmitted by the foot, it was reported that low arch is related to excessive foot pronation, while high arched foot is more rigid and inflexible. Therefore, it is also probable, that foot arch alterations may change the force transmission via myofascial chains. The objective of this study was to evaluate the effect of symmetrical and asymmetrical excessive feet arching on muscle fatigue in the distal body parts such as the lower limbs, trunk, and head. Seventy-seven women (25.15 ± 5.97 years old, 62 ± 10 kg, 167 ± 4 cm) were assigned to three groups according to the foot arch index (Group 1—both feet with normal arch, Group 2—one foot with normal arch and the other high-arched, Group 3—both feet with high-arch). The bioelectrical activity of the right and left hamstrings muscles, erector spine, masseter, and temporalis muscle was recorded by sEMG during the isometric contraction lasting for 60 s. The stable intensity of the muscle isometric contraction was kept for all the time during the measurement. Mean frequency difference (%), slope (Hz), and intercept (Hz) values were calculated for muscle fatigue evaluation. No differences were observed in fatigue variables for all evaluated muscles between the right and left side in women with symmetrical foot arches, but in the group with asymmetric foot arches, the higher muscle fatigue on the normal-arched side compared to the high-arched side was noted. Significantly greater values of the semitendinosus—semimembranosus muscle frequency difference was observed on the normal-arched side compared to the high-arched side (p = 0.04; ES = 0.52; −29.5 ± 9.1% vs. −24.9 ± 8.4%). In the group with asymmetric foot arches, a significantly higher value of lumbar erector spinae muscle frequency slope (p = 0.01; ES = 1.32; −0.20 ± 0.04 Hz vs. −0.14 ± 0.05 Hz) and frequency difference (p = 0.04; ES = 0.92; −7.8 ± 3.1% vs. −4.8 ± 3.4%) were observed on the high-arched foot side compared to the side with normal foot arching. The thoracic erector spine muscle frequency slope was significantly larger in women with asymmetrical arches than in those with both feet high-arched (right side: p = 0.01; ES = 1.25; −0.20 ± 0.08 Hz vs. −0.10 ± 0.08 Hz); (left side: p = 0.005; ES = 1,17; −0.19 ± 0.04 Hz vs. −0.13 ± 0.06 Hz) and compared to those with normal feet arches (right side: p = 0.02; ES = 0.58; −0.20 ± 0.08 Hz vs. −0.15 ± 0.09 Hz); (left side: p = 0.005; ES = 0.87; −0.19 ± 0.04 Hz vs. −0.14 ± 0.07 Hz). In the group with asymmetric foot arches, the frequency difference was significantly higher compared to those with both feet high-arched (right side: p = 0.01; ES = 0.87; −15.4 ± 6.8% vs. 10.4 ± 4.3%); (left side: p = 0.01; ES = 0.96; 16.1 ± 6.5% vs. 11.1 ± 3.4%). In the group with asymmetric foot arches, a significantly higher value of the masseter muscle frequency difference was observed on the high-arched side compared to the normal-arched side (p = 0.01; ES = 0.95; 6.91 ± 4.1% vs. 3.62 ± 2.8%). A little increase in the longitudinal arch of the foot, even though such is often not considered as pathological, may cause visible changes in muscle function, demonstrated as elevated signs of muscles fatigue. This study suggests that the consequences of foot high-arching may be present in distal body parts. Any alterations of the foot arch should be considered as a potential foot defect, and due to preventing muscle overloading, some corrective exercises or/and corrective insoles for shoes should be used. It can potentially reduce both foot overload and distant structures overload, which may diminish musculoskeletal system pain and dysfunctions.


Author(s):  
Amit Kumar ◽  
Xu Zhang ◽  
Oscar Vadas ◽  
Fisentzos Stylianou ◽  
Nicolas Dos Santos Pacheco ◽  
...  

A model for parasitic motility has been proposed in which parasite filamentous actin (F-actin) is attached to surface adhesins by a large component of the glideosome, known as the glideosome-associated connector protein (GAC). This large 286 kDa protein interacts at the cytoplasmic face of the plasma membrane with the phosphatidic acid-enriched inner leaflet and cytosolic tails of surface adhesins to connect them to the parasite actomyosin system. GAC is observed initially to the conoid at the apical pole and re-localised with the glideosome to the basal pole in gliding parasite. GAC presumably functions in force transmission to surface adhesins in the plasma membrane and not in force generation. Proper connection between F-actin and the adhesins is as important for motility and invasion as motor operation itself. This notion highlights the need for new structural information on GAC interactions, which has eluded the field since its discovery. We have obtained crystals that diffracted to 2.6-2.9 Å for full-length GAC from Toxoplasma gondii in native and selenomethionine-labelled forms. These crystals belong to space group P212121, cell dimensions are roughly a=119 Å, b=123Å, c=221Å, α=90, β=90, γ=90 with 1 molecule per asymmetric unit, suggesting a more compact conformation than previously proposed.


Designs ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Nils König ◽  
Ferdinand Schockenhoff ◽  
Adrian König ◽  
Frank Diermeyer

Rapid prototyping has become increasingly popular over the past years. However, its application is heavily confined to a part size that fits the small build volume of additive machines. This paper presents a universal design method to overcome this limitation while preserving the economic advantages of rapid prototyping over conventional processes. It segments large, thin-walled parts and joins the segments. The method aims to produce an assembly with minimal loss to the performance and characteristics of a solid part. Based on a set of requirements, a universal segmentation approach and a novel hybrid joint design combining adhesive bonding and press fitting are developed. This design allows for the force transmission, positioning, and assembly of the segments adaptive to their individual geometry. The method is tailored to fused deposition modeling (FDM) by minimizing the need for support structures and actively compensating for manufacturing tolerances. While a universal application cannot be guaranteed, the adaptive design was proven for a variety of complex geometries. Using automotive trim parts as an example, the usability, benefits, and novelty of the design method is presented. The method itself shows a high potential to overcome the build volume limitation for thin-walled parts in an economic manner.


2021 ◽  
pp. 175319342110612
Author(s):  
Angelina Garkisch ◽  
Stefanie Schmitt ◽  
Nicole Kim ◽  
Dagmar-C. Fischer ◽  
Karl-Josef Prommersberger ◽  
...  

The flexor digitorum superficialis tendon of the ring finger can be transferred to the thumb flexor. We followed ten patients after such a transfer for 5–128 months and measured grip strength and force transmission of the fingers and individual phalanges while the patients gripped 10-cm or 20-cm diameter cylinders. The grip strength of the middle, ring and little fingers was reduced when gripping the 10-cm cylinder, with a significantly larger decrease in the ring finger. With the 20-cm cylinder, grip forces of all fingers were almost identical, with slightly lower force of the ring finger and slightly higher forces in the index and small fingers. We conclude that after transfer of flexor digitorum superficialis tendon from a ring finger, grip strength of the ring finger is reduced. Finger forces are more hampered while gripping objects with smaller circumferences than large ones.


Sign in / Sign up

Export Citation Format

Share Document