knee adduction moment
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 70)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Kirsten Seagers ◽  
Scott D Uhlrich ◽  
Julie A Kolesar ◽  
Madeleine Berkson ◽  
Janelle M Janeda ◽  
...  

People with knee osteoarthritis who adopt a modified foot progression angle (FPA) during gait often benefit from a reduction in the knee adduction moment and knee pain. It is unknown, however, whether changes in the FPA increase hip moments, a surrogate measure of hip loading, which may increase the risk of hip pain or osteoarthritis. This study examined how altering the FPA affects hip moments. Individuals with knee osteoarthritis walked on an instrumented treadmill with their baseline gait, 10° toe-in gait, and 10° toe-out gait. A musculoskeletal modeling package was used to compute joint moments from the experimental data. Fifty participants were selected from a larger study who reduced their peak knee adduction moment with a modified FPA. In this group, participants reduced the first peak of the knee adduction moment by 7.6% with 10° toe-in gait and reduced the second peak by 11.0% with 10 ° toe-out gait. Modifying the FPA reduced the early-stance hip abduction moment, at the time of peak hip contact force, by 4.3% ± 1.3% for 10° toe-in gait (p=0.005) and by 4.6% ± 1.1% for 10° toe-out gait (p<0.001) without increasing the flexion and internal rotation moments (p>0.15). In summary, when adopting a FPA modification that reduced the knee adduction moment, participants did not increase surrogate measures of hip loading.


Biomechanics ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 346-357
Author(s):  
Gaervyn J. Salverda ◽  
Micah D. Drew ◽  
Samantha M. Krammer ◽  
Tyler N. Brown

Background: This study determined whether prolonged load carriage increased the magnitude and velocity of knee adduction biomechanics and whether increases were related to knee varus thrust or alignment. Methods: Seventeen participants (eight varus thrust and nine control) had knee adduction quantified during 60-min of walking (1.3 m/s) with three body-borne loads (0 kg, 15 kg, and 30 kg). Magnitude, average and maximum velocity, and time to peak of knee adduction biomechanics were submitted to a mixed model ANOVA. Results: With the 0 and 15 kg loads, varus thrust participants exhibited greater magnitude (p ≤ 0.037, 1.9–2.3°), and average (p ≤ 0.027, up to 60%) and maximum velocity (p ≤ 0.030, up to 44%) of varus thrust than control, but differences were not observed with the 30 kg load. The 15 and 30 kg loads led to significant increases in magnitude (p ≤ 0.017, 15–25%) and maximum velocity (p ≤ 0.017, 11–20%) of knee adduction moment, while participants increased magnitude (p ≤ 0.043, up to 0.3°) and maximum velocity (p ≤ 0.022, up to 5.9°/s and 6.7°/s) for knee adduction angle and varus thrust at minutes 30 and 60. Static alignment did not differ between groups (p = 0.412). Conclusion: During prolonged load carriage, all participants increased the magnitude and velocity of knee adduction biomechanics and the potential risk of knee OA.


Author(s):  
S. van Drongelen ◽  
S. Braun ◽  
F. Stief ◽  
A. Meurer

Patients with unilateral hip osteoarthritis show a characteristic gait pattern in which they unload the affected leg and overload the unaffected leg. Information on the gait characteristics of patients with bilateral hip osteoarthritis is very limited. The main purposes of this study were to investigate whether the gait pattern of both legs of patients with bilateral hip osteoarthritis deviates from healthy controls and whether bilateral hip osteoarthritis patients show a more symmetrical joint load compared to unilateral hip osteoarthritis patients. In this prospective study, 26 patients with bilateral hip osteoarthritis, 26 patients with unilateral hip osteoarthritis and 26 healthy controls were included. The three groups were matched for gender, age and walking speed. Patients were scheduled for a unilateral total hip arthroplasty on the more affected/more painful side. All participants underwent a three-dimensional gait analysis. Gait kinematics and gait kinetics of patients and controls were compared using Statistical Parametric Mapping. Corrected for speed, the gait kinematics and kinetics of both legs of patients with bilateral hip osteoarthritis differed from healthy controls. Bilateral patients had symmetrical knee joint loading, in contrast to the asymmetrical knee joint loading in unilateral hip osteoarthritis patients. The ipsilateral leg of the bilateral patients could be included in studies in addition to unilateral hip osteoarthritis patients as no differences were found. Although patients with bilateral hip osteoarthritis show more symmetrical frontal plane knee joint moments, a pathological external knee adduction moment in the second half of stance was present in the ipsilateral leg in patients with unilateral and bilateral hip osteoarthritis. The lateral adjustment of the knee adduction moment may initiate or accelerate progression of degenerative changes in the lateral compartment of the knee.


Author(s):  
JONATHAN KENNETH SINCLAIR ◽  
BOBBIE BUTTERS

The aim of this experiment was to provide insight into the immediate influence of both semi-custom insoles and knee sleeves in recreational male runners/athletes suffering from patellofemoral pain and also to explore the association between the extent of patellofemoral pain and psychological wellbeing. Experiment 1 examined 17 male recreational runners with patellofemoral pain, in semi-custom insole and no-insole conditions. Experiment 2 examined 13 male recreational athletes with patellofemoral pain, undertaking run, [Formula: see text] cut and single-leg hop movements in knee sleeve and no-sleeve conditions. In both experiments, motion capture and ground reaction forces were collected, allowing kinetics and three-dimensional kinematics to be calculated alongside patellofemoral joint loading quantified using musculoskeletal modeling. In both experiments, patellofemoral pain symptoms were examined using the KOOS patellofemoral pain subscale and psychological wellbeing using the COOP-WONCA questionnaire. The findings from both experiments showed that pain symptoms significantly predicted psychological wellbeing ([Formula: see text] in experiment 1 and [Formula: see text] in experiment 2). Experiment 1 showed that orthoses significantly reduced tibial internal rotation range of motion (no-[Formula: see text] and [Formula: see text]) whilst also increasing the peak knee adduction moment (no-[Formula: see text][Formula: see text]N[Formula: see text]m/kg and [Formula: see text][Formula: see text]N[Formula: see text]m/kg). The findings from experiment 2 revealed that the knee sleeve reduced the peak patellofemoral force (no-[Formula: see text][Formula: see text]BW and [Formula: see text][Formula: see text]BW) in the run movement and the patellofemoral load rate in the cut movement (no-[Formula: see text][Formula: see text]BW/s and [Formula: see text][Formula: see text]BW/s). Overall, the findings confirm that pain symptoms are predictive of psychological wellbeing in recreational male athletes with patellofemoral pain. Furthermore, the findings suggest that both insoles and knee sleeves may provide immediate biomechanical benefits in recreationally active individuals with patellofemoral pain, although when wearing insoles this may be at the expense of an increased knee adduction moment during running.


2021 ◽  
Author(s):  
Nataliya Rokhmanova ◽  
Katherine J. Kuchenbecker ◽  
Peter B. Shull ◽  
Reed Ferber ◽  
Eni Halilaj

Knee osteoarthritis is a progressive disease mediated by high joint loads. Foot progression angle modifications that reduce the knee adduction moment (KAM), a surrogate of knee loading, have demonstrated efficacy in alleviating pain and improving function. Although changes to the foot progression angle are overall beneficial, KAM reductions are not consistent across patients. Moreover, customized interventions are time-consuming and require instrumentation not commonly available in the clinic. We present a model that uses minimal clinical data to predict the extent of first peak KAM reduction after toe-in gait retraining. For such a model to generalize, the training data must be large and variable. Given the lack of large public datasets that contain different gaits for the same patient, we generated this dataset synthetically. Insights learned from ground-truth datasets with both baseline and toe-in gait trials (N=12) enabled the creation of a large (N=138) synthetic dataset for training the predictive model. On a test set of data collected by a separate research group (N=15), the first peak KAM reduction was predicted with a mean absolute error of 0.134% body weight * height (%BW*HT). This error is smaller than the test set’s subject average standard deviation of the first peak during baseline walking (0.306%BW*HT). This work demonstrates the feasibility of training predictive models with synthetic data and may provide clinicians with a streamlined pathway to identify a patient-specific gait retraining outcome without requiring gait lab instrumentation.


Author(s):  
Kurt Manal ◽  
Thomas S. Buchanan

Abstract The knee adduction moment is associated with the progression of knee osteoarthritis (OA). The adduction moment reflects the net effect of muscles, passive tissues and bone-on-bone contact forces. Medial compartment OA is more common than lateral and therefore our ability to correctly partition bone-on-bones forces across the medial and lateral compartments is key to understanding mechanical factors associated with the onset and progression of knee OA. We have used frontal plane moment balancing to resolve medial and lateral compartment forces. In this technical brief we present an alternate and more efficient methodology, the 1-step approach, linking the sagittal and frontal planes in the determination of muscle forces. Muscle forces are the dominant contributors to knee joint loading and therefore our ability to predict compartmental contact is dependent on our ability to predict muscle forces. The 1-step approach introduces a penalty function limiting total compressive force from acting in the lateral compartment whenever the internal moment is net abduction (i.e., external knee adduction). Total compressive force in the lateral compartment implies greater lateral loading compared to medial, and this is inconsistent with what we know about the knee adduction moment and medial-to-lateral force distribution during gait. An EMG-driven musculoskeletal model with modified hamstrings EMG was implemented to demonstrate the 1-step methodology and compare results with frontal plane moment balancing. The 1-step approach is a more efficient methodology that can be used in place of frontal plane moment balancing.


Author(s):  
Na-Kyoung Lee ◽  
Kyoung Min Lee ◽  
Heesoo Han ◽  
Seungbum Koo ◽  
Seung-Baik Kang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5596
Author(s):  
Sizhong Wang ◽  
Peter P. K. Chan ◽  
Ben M. F. Lam ◽  
Zoe Y. S. Chan ◽  
Janet H. W. Zhang ◽  
...  

The present study compared the effect between walking exercise and a newly developed sensor-based gait retraining on the peaks of knee adduction moment (KAM), knee adduction angular impulse (KAAI), knee flexion moment (KFM) and symptoms and functions in patients with early medial knee osteoarthritis (OA). Eligible participants (n = 71) with early medial knee OA (Kellgren-Lawrence grade I or II) were randomized to either walking exercise or gait retraining group. Knee loading-related parameters including KAM, KAAI and KFM were measured before and after 6-week gait retraining. We also examined clinical outcomes including visual analog pain scale (VASP) and Knee Injury and Osteoarthritis Outcome Score (KOOS) at each time point. After gait retraining, KAM1 and VASP were significantly reduced (both Ps < 0.001) and KOOS significantly improved (p = 0.004) in the gait retraining group, while these parameters remained similar in the walking exercise group (Ps ≥ 0.448). However, KAM2, KAAI and KFM did not change in both groups across time (Ps ≥ 0.120). A six-week sensor-based gait retraining, compared with walking exercise, was an effective intervention to lower medial knee loading, relieve knee pain and improve symptoms for patients with early medial knee OA.


Sign in / Sign up

Export Citation Format

Share Document