Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan

Geoderma ◽  
2020 ◽  
Vol 377 ◽  
pp. 114487
Author(s):  
Nobuhisa Koga ◽  
Seiji Shimoda ◽  
Yasuhito Shirato ◽  
Takashi Kusaba ◽  
Takeo Shima ◽  
...  
2021 ◽  
Author(s):  
David Bysouth ◽  
Merritt Turetsky ◽  
Andrew Spring

<p>Climate change is causing rapid warming at northern high latitudes and disproportionately affecting ecosystem services that northern communities rely upon. In Canada’s Northwest Territories (NWT), climate change is impacting the access and availability of traditional foods that are critical for community health and well-being. With climate change potentially expanding the envelope of suitable agricultural land northward, many communities in the NWT are evaluating including agriculture in their food systems. However, the conversion of boreal forest to agriculture may degrade the carbon rich soils that characterize the region, resulting in large carbon losses to the atmosphere and the depletion of existing ecosystem services associated with the accumulation of soil organic matter. Here, we first summarize the results of 35 publications that address land use change from boreal forest to agriculture, with the goal of understanding the magnitude and drivers of carbon stock changes with time-since-land use change. Results from the literature synthesis show that conversion of boreal forest to agriculture can result in up to ~57% of existing soil carbon stocks being lost 30 years after land use change occurs. In addition, a three-way interaction with soil carbon, pH and time-since-land use change is observed where soils become more basic with increasing time-since-land use change, coinciding with declines in soil carbon stocks. This relationship is important when looking at the types of crops communities are interested in growing and the type of agriculture associated with cultivating these crops. Partnered communities have identified crops such as berry bushes, root vegetables, potatoes and corn as crops they are interested in growing. As berry bushes grow in acidic conditions and the other mentioned crops grow in more neutral conditions, site selection and management practices associated with growing these crops in appropriate pH environments will be important for managing soil carbon in new agricultural systems in the NWT. Secondly, we also present community scale soil data assessing variation in soil carbon stocks in relation to potential soil fertility metrics targeted to community identified crops of interest for two communities in the NWT.  We collected 192 soil cores from two communities to determine carbon stocks along gradients of potential agriculture suitability. Our field soil carbon measurements in collaboration with the partnered NWT communities show that land use conversions associated with agricultural development could translate to carbon losses ranging from 2.7-11.4 kg C/m<sup>2</sup> depending on the type of soil, agricultural suitability class, and type of land use change associated with cultivation. These results highlight the importance of managing soil carbon in northern agricultural systems and can be used to emphasize the need for new community scale data relating to agricultural land use change in boreal soils. Through the collection of this data, we hope to provide northern communities with a more robust, community scale product that will allow them to make informed land use decisions relating to the cultivation of crops and the minimization of soil carbon losses while maintaining the culturally important traditional food system.</p>


Author(s):  
Kurniatun Hairiah

Maintaining and where feasible restoring soil carbon stocks is part of all sustainable development strategies that have a chance of meeting the global commitment of the Paris Agreement to contain global warming within a 1.5<sup>o</sup>C limit. Active policies to incentivize increased soil carbon storage require under­standing of the drivers of soil carbon decline, as well as the conditions under which soil management leads to an increase. Soil carbon transitions -- shifts from decline to increase of soil carbon stocks -- have been recorded as part of agricultural intensification. Organic inputs supporting soil carbon may primarily depend on roots, rather than aboveground inputs, and thus on the choice of crops, trees, and grasses that make up an agricultural land use system.


2016 ◽  
Vol 13 (1) ◽  
pp. 59-68
Author(s):  
Roshan M. Bajracharya ◽  
Him Lal Shrestha ◽  
Ramesh Shakya ◽  
Bishal K. Sitaula

Land management regimes and forest types play an important role in the productivity and accumulation of terrestrial carbon pools. While it is commonly accepted that forests enhance carbon sequestration and conventional agriculture causes carbon depletion, the effects of agro-forestry are not well documented. This study investigated the carbon stocks in biomass and soil, along with the selected soil properties in agro-forestry plots compared to community forests (CF) and upland farms in Chitwan, Gorkha and Rasuwa districts of Central Nepal during the year 2012-2013. We determined the total above ground biomass carbon, soil organic carbon (SOC) stocks and soil properties (bulk density, organic carbon per cent, pH, total nitrogen (TN), available phosphorus (P), exchangeable potassium (K), and cation exchange capacity (CEC)) on samples taken from four replicates of 500 m2 plots each in community forests, agro-forestry systems and agricultural land. The soil was sampled in two increments at 0-15 cm and 15-30 cm depths and intact cores removed for bulk density and SOC determination, while loose samples were separately collected for the laboratory analysis of other soil properties. The mean SOC percent and corresponding soil carbon stocks to 30 cm depth were generally highest in CF (3.71 and 3.69 per cent, and 74.98 and 76.24 t ha-1, respectively), followed by leasehold forest (LHF) (2.26 and 1.13 per cent and 40.72 and 21.34 t ha-1, respectively) and least in the agricultural land (3.05 and 1.09 per cent, and 63.54 and 19.42 t ha-1, respectively). This trend was not, however, observed in Chitwan, where agriculture (AG) had the highest SOC content (1.98 per cent) and soil carbon stocks (42.5 t ha-1), followed by CF (1.8 per cent and 41.2 t ha-1) and leasehold forests (1.56 per cent and 35.3 t ha-1) although the differences were not statistically significant. Other soil properties were not significantly different among land use types with the exceptions of pH, total N, available P and CEC in the Chitwan plots. Typically, SOC and soil carbon stocks (to 30cm depth) were positively correlated with each other and with TN and CEC. The AGB-C was expectantly highest in Rasuwa district CF (ranging from 107.3 to 260.3 t ha-1) due to dense growth and cool climate, followed by Gorkha (3.1 to 118.4 t ha-1), and least in Chitwan (17.6 to 95.2 t ha-1). The highest C stocks for agro-forestry systems in both above ground and soil were observed in Rasuwa, followed by Chitwan district. Besides forests, agro-forestry systems also hold good potential to store and accumulate carbon, hence they have scope for contributing to climate change mitigation and adaptation with co-benefits.Journal of Forest and Livelihood 13(1) May, 2015, page: 56-68


2007 ◽  
Vol 81 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Thomas Kätterer ◽  
Liselotte Andersson ◽  
Olof Andrén ◽  
Jan Persson

Geoderma ◽  
2019 ◽  
Vol 337 ◽  
pp. 394-401 ◽  
Author(s):  
Camila A. dos Santos ◽  
Claudia de P. Rezende ◽  
Érika F. Machado Pinheiro ◽  
José M. Pereira ◽  
Bruno J.R. Alves ◽  
...  

2016 ◽  
Vol 15 (3) ◽  
pp. 258
Author(s):  
M.S. Nagaraja ◽  
A.K. Bhardwaj ◽  
G.V.P. Reddy ◽  
V.R.R. Parama ◽  
B. Kaphaliya

Sign in / Sign up

Export Citation Format

Share Document