carbon losses
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 66)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 14 (2) ◽  
pp. 903
Author(s):  
Raymundo Marcos-Martinez ◽  
José J. Sánchez ◽  
Lorie Srivastava ◽  
Natthanij Soonsawad ◽  
Dominique Bachelet

The protection and expansion of forest carbon sinks are critical to achieving climate-change mitigation targets. Yet, the increasing frequency and severity of forest disturbances challenge the sustainable provision of forest services. We investigated patterns of forest disturbances’ impacts on carbon sinks by combining spatial datasets of forest carbon sequestration from biomass growth and emissions from fire and bark beetle damage in the western United States (U.S.) and valued the social costs of forest carbon losses. We also examined potential future trends of forest carbon sinks under two climate-change projections using a global vegetation model. We found that forest carbon losses from bark-beetle damage were larger than emissions from fires between 2003 and 2012. The cumulative social costs of forest carbon losses ranged from USD 7 billion to USD 72 billion, depending on the severity of global warming and the discount rate. Forest carbon stocks could increase around 5% under Representative Concentration Pathway (RCP) 4.5 or 7% under RCP 8.5 by 2091 relative to 2011 levels, mostly in forests with high net primary productivity. These results indicate that spatially explicit management of forest disturbances may increase forest carbon sinks, thereby improving opportunities to achieve critical climate-change mitigation goals.


2022 ◽  
Author(s):  
Uidemar Morais Barral ◽  
Alexandre Christófaro Silva ◽  
Cristiano Christófaro ◽  
Camila Rodrigues Costa ◽  
Aparecido Penafort Filho ◽  
...  

Abstract Peatlands are ecosystems formed by organic matter (~ 15% of the total mass) and water (~ 85% of the total mass), and constitute a particular type of free aquifer. They perform important hydrological functions by storing excess water during rainfall events, contributing to the baseflow of its rivers throughout the year. Degradation affects the dynamics of the water table, which, in turn, can influence the decomposition of organic matter content and the release of carbon into its waters. Its water retention capacity may also be compromised and reduce the volume of water available downstream, especially in the dry season. The aim of this study was to evaluate the effects of anthropic interference on variations in groundwater, water storage, and carbon flow in two tropical mountain peatlands, located at the head of the Araçuaí River, in Serra do Espinhaço Meridional (SdEM), Minas Gerais, Brazil. Groundwater levels were installed in piezometers distributed on a peatland located in a protected area (Natural Park) (Protected - TP) and in a peatland located outside the conservation unit (Anthropized - TA). Data were analyzed considering the daily rainfall recorded by an automatic weather station installed in the study area. From the data on precipitation and water table level variation, the specific yield (Sy) in the two peatlands was calculated. The observed flows and the mean monthly Sy on each piezometer were correlated and their significance was verified using the t test (p <0.05). The relationship between the observed flow and the mean monthly values of Sy obtained for the piezometers were verified through multiple regression. The specific yield correlated significantly with flow in both peatlands (p < 0.05). Multiple linear regression showed a coefficient of determination (R2) of 0.92 in both peatlands, indicating a direct relationship between Sy and observed flow. The TP presented a 43% smaller variation in the water table, a 7% higher specific yield and a specific flow rate of 13% higher in relation to the TA. The peatland located in a protected area retains more water, with less variation in flow throughout the year, and has less carbon output in the water compared to the anthropized peatland. The results demonstrated that anthropization is causing degradation of the peatland, reducing its water holding capacity and accelerating its carbon losses. In the medium term, these effects may lead to a drastic reduction in flow in the upper course of the Araçuaí River.


2022 ◽  
Vol 14 (1) ◽  
pp. 194
Author(s):  
Andrey Sirin ◽  
Maria Medvedeva

Peat fires differ from other wildfires in their duration, carbon losses, emissions of greenhouse gases and highly hazardous products of combustion and other environmental impacts. Moreover, it is difficult to identify peat fires using ground-based methods and to distinguish peat fires from forest fires and other wildfires by remote sensing. Using the example of catastrophic fires in July–August 2010 in the Moscow region (the center of European Russia), in the present study, we consider the results of peat-fire detection using Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) hotspots, peat maps, and analysis of land cover pre- and post-fire according to Landsat-5 TM data. A comparison of specific (for detecting fires) and non-specific vegetation indices showed the difference index ΔNDMI (pre- and post-fire normalized difference moisture Index) to be the most effective for detecting burns in peatlands according to Landsat-5 TM data. In combination with classification (both unsupervised and supervised), this index offered 95% accuracy (by ground verification) in identifying burnt areas in peatlands. At the same time, most peatland fires were not detected by Terra/Aqua MODIS data. A comparison of peatland and other wildfires showed the clearest differences between them in terms of duration and the maximum value of the fire radiation power index. The present results may help in identifying peat (underground) fires and their burnt areas, as well as accounting for carbon losses and greenhouse gas emissions.


Author(s):  
Carole Helfter ◽  
Mangaliso Gondwe ◽  
Michael Murray-Hudson ◽  
Anastacia Makati ◽  
Ute Skiba

We report on three years of continuous monitoring of carbon dioxide (CO 2 ) and methane (CH 4 ) emissions in two contrasting wetland areas of the Okavango Delta, Botswana: a perennial swamp and a seasonal floodplain. The hydrographic zones of the Okavango Delta possess distinct attributes (e.g. vegetation zonation, hydrology) which dictate their respective greenhouse gas (GHG) temporal emission patterns and magnitude. The perennial swamp was a net source of carbon (expressed in CO 2 -eq units), while the seasonal swamp was a sink in 2018. Despite differences in vegetation types and lifecycles, the net CO 2 uptake was comparable at the two sites studied in 2018/2020 (−894.2 ± 127.4 g m −2  yr −1 at the perennial swamp, average of the 2018 and 2020 budgets, and −1024.5 ± 134.7 g m −2  yr −1 at the seasonal floodplain). The annual budgets of CH 4 were however a factor of three larger at the permanent swamp in 2018 compared to the seasonal floodplain. Both ecosystems were sensitive to drought, which switched these sinks of atmospheric CO 2 into sources in 2019. This phenomenon was particularly strong at the seasonal floodplain (net annual loss of CO 2 of 1572.4 ± 158.1 g m −2 ), due to a sharp decrease in gross primary productivity. Similarly, drought caused CH 4 emissions at the seasonal floodplain to decrease by a factor of 4 in 2019 compared to the previous year, but emissions from the perennial swamp were unaffected. Our study demonstrates that complex and divergent processes can coexist within the same landscape, and that meteorological anomalies can significantly perturb the balance of the individual terms of the GHG budget. Seasonal floodplains are particularly sensitive to drought, which exacerbate carbon losses to the atmosphere, and it is crucial to improve our understanding of the role played by such wetlands in order to better forecast how their emissions might evolve in a changing climate. Studying such hydro-ecosystems, particularly in the data-poor tropics, and how natural stressors such as drought affect them, can also inform on the potential impacts of man-made perturbations (e.g. construction of hydro-electric dams) and how these might be mitigated. Given the contrasting effects of drought on the CO 2 and CH 4 flux terms, it is crucial to evaluate an ecosystem's complete carbon budget instead of treating these GHGs in isolation. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


2021 ◽  
Author(s):  
Sankar Mariappan ◽  
Iain P. Hartley ◽  
Elizabeth L. Cressey ◽  
Jennifer A.J. Dungait ◽  
Timothy A. Quine

2021 ◽  
Vol 297 ◽  
pp. 113381
Author(s):  
Luiz Eduardo de Oliveira Gomes ◽  
Christian J. Sanders ◽  
Gabriel N. Nobrega ◽  
Lucas C. Vescovi ◽  
Hermano M. Queiroz ◽  
...  

2021 ◽  
Vol 17 ◽  
Author(s):  
Cecile De Klein ◽  
Ross Monaghan ◽  
Mitchell Donovan ◽  
Aaron Wall ◽  
Louis Schipper ◽  
...  

Pasture resilience commonly refers to a pasture’s ability to withstand or rebound from pressures to maintain production and quality of sown species. We suggest that a broader definition of pasture resilience is needed that also includes environmental responses, thus ensuring that productivity and environmental outcomes are considered together. Key attributes of resilient pastures to minimise soil erosion and nutrient, greenhouse gas and soil carbon losses are summarised based on current understanding of environmental losses from pastoral systems. These attributes include maintaining consistent pasture cover, high energy and/or low nitrogen species and species diversity that provides complementary root morphology and/or growth seasonality; all are likely to have positive benefits for production and productivity. There is a potential tension, however, between productivity and methane emissions, as methane production increases with increased feed intake. Increasing pasture quality is therefore also an important consideration for pasture resilience as it can maintain animal productivity at lower levels of feed intake. From a farm systems perspective, the choice of pasture species should reflect the desired attributes for both productivity and environmental outcomes, and ensure that the sown species persist in the sward. Finally, we note that none of the environmental attributes/benefits are likely to deliver major farm-scale improvements on their own; progress will likely be incremental improvements upon implementing a range of attributes.


2021 ◽  
Author(s):  
Wenjuan Huang ◽  
Kefeng Wang ◽  
Chenglong Ye ◽  
William C. Hockaday ◽  
Gangsheng Wang ◽  
...  

2021 ◽  
Vol 496 ◽  
pp. 119435
Author(s):  
S. Gerrand ◽  
J. Aspinall ◽  
T. Jensen ◽  
C. Hopkinson ◽  
A. Collingwood ◽  
...  
Keyword(s):  

2021 ◽  
Vol 306 ◽  
pp. 108438
Author(s):  
Joshua D. Gamble ◽  
Gary W. Feyereisen ◽  
Timothy J. Griffis ◽  
Chris D. Wente ◽  
John M. Baker

Sign in / Sign up

Export Citation Format

Share Document