Spatial and temporal dynamics of soil organic carbon stock and carbon sequestration affected by major land-use conversions in Northwestern highlands of Ethiopia

Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115506
Author(s):  
Eyob Tilahun ◽  
Mitiku Haile ◽  
Girmay Gebresamuel ◽  
Gete Zeleke
Soil Science ◽  
2011 ◽  
Vol 176 (2) ◽  
pp. 110-114 ◽  
Author(s):  
Sriroop Chaudhuri ◽  
Eugenia M. Pena-Yewtukhiw ◽  
Louis M. McDonald ◽  
Jeffrey Skousen ◽  
Mark Sperow

2021 ◽  
Vol 16 (3) ◽  
pp. 662-664
Author(s):  
Sabu Joseph ◽  
Rahul R ◽  
Sukanya S

The changes in the pattern of land use and land cover (LU/LC) have remarkable consequences on ecosystem functioning and natural resources dynamics. The present study analyzes the spatial pattern of LU/LC change detection along the Killiar River Basin (KRB), a major tributary of Karamana river in Thiruvananthapuram district, Kerala (India), over a period of 64 years (1957-2021) through Remote Sensing and GIS approach. The rationale of the study is to identify and classify LU/LC changes in KRB using the Survey of India (SOI) toposheet (1:50,000) of 1957, LISS-III imagery of 2005, Landsat 8 OLI & TIRS imagery of 2021 and further to scrutinize the impact of LU/LC conversion on Soil Organic Carbon stock in the study area. Five major LU/LC classes, viz., agriculture land, built-up, forest, wasteland and water bodies were characterized from available data. Within the study period, built-up area and wastelands showed a substantial increase of 51.51% and 15.67% respectively. Thus, the general trend followed is the increase in built-up and wastelands area which results in the decrease of all other LU/LC classes. Based on IPCC guidelines, total soil organic carbon (SOC) stock of different land-use types was estimated and was 1292.72 Mt C in 1957, 562.65 Mt C in 2005 and it reduced to 152.86 Mt C in 2021. This decrease is mainly due to various anthropogenic activities, mainly built-up activities. This conversion for built-up is at par with the rising population, and over-exploitation of natural and agricultural resources is increasing every year.


2014 ◽  
Vol 11 (2) ◽  
pp. 507-518 ◽  
Author(s):  
Samereh Falahatkar ◽  
Seyed Mohsen Hosseini ◽  
Abdolrassoul Salman Mahiny ◽  
Shamsollah Ayoubi ◽  
Shao-qiang Wang

Author(s):  
Bassey Udom ◽  
Joshua Ogunwole ◽  
Chima Wokocha

<p><span>Protection of soil organic carbon and acid-hydrolyzable carbohydrates in aggregate-size fractions is important for appraising soil degradation and aggregation under land use types. Aggregate-associated soil organic carbon (SOC) and acid-hydrolyzable carbohydrates (R-CHO) in bulk soils and aggregate-size fractions of a sandy loam soil under Alchornea bush, Rubber, Oil palm and Teak plantations in southern Nigeria were studied. Results revealed significant differences in aggregate-associated SOC and R-CHO, bulk densities, total porosity, soil organic carbon stock and aggregate stability among the land use types. Greater SOC was stored in macro-aggregates &gt;0.25 mm, while greater R-CHO was occluded in micro-aggregates &lt;0.25 mm (p&lt;0.05). The highest mean weight diameter (MWD) was 1.01 mm in Alchornea soils and 0.92 mm in Oil palm plantation at 0-15 cm topsoil. Soil organic carbon stock in 0-15 cm topsoil was 77.7, 81.8, 92.2, and 67.5 kg C ha<sup>-1</sup> in Alchornea, Rubber, Oil palm, and Teak soils, respectively. Relationships showed a positive linear correlations between MWD and SOC (r = 0.793, p &lt; 0.05) and R-CHO (r = 0.789. p &lt; 0.05). Alchornea bush and Oil palm plantation increased macro-aggregate formation and macro-pores &gt;5 µm, therefore they have greater potentials to boost protection of SOC in soil macro-aggregates.</span></p>


Sign in / Sign up

Export Citation Format

Share Document