scholarly journals Late Quaternary sedimentary record and Holocene channel avulsions of the Jamuna and Old Brahmaputra River valleys in the upper Bengal delta plain

Geomorphology ◽  
2014 ◽  
Vol 227 ◽  
pp. 123-136 ◽  
Author(s):  
Jennifer L. Pickering ◽  
Steven L. Goodbred ◽  
Meredith D. Reitz ◽  
Thomas R. Hartzog ◽  
Dhiman R. Mondal ◽  
...  
2016 ◽  
Author(s):  
Jishnu Adhikari ◽  
◽  
Debashis Chatterjee ◽  
Shilajit Barua ◽  
Thomas R. Kulp

Limnology ◽  
2009 ◽  
Vol 11 (2) ◽  
pp. 133-142 ◽  
Author(s):  
Hossain M. Anawar ◽  
Takahito Yoshioka ◽  
Eiichi Konohira ◽  
Junji Akai ◽  
M. C. Freitas ◽  
...  

2017 ◽  
Vol 11 (3) ◽  
pp. 1265-1282 ◽  
Author(s):  
Graham L. Gilbert ◽  
Stefanie Cable ◽  
Christine Thiel ◽  
Hanne H. Christiansen ◽  
Bo Elberling

Abstract. The Zackenberg River delta is located in northeast Greenland (74°30′ N, 20°30′ E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.


Author(s):  
Pinaki Sar ◽  
Balaram Mohapatra ◽  
Soma Ghosh ◽  
Dhiraj Paul ◽  
Angana Sarkar ◽  
...  

Geomorphology ◽  
2013 ◽  
Vol 185 ◽  
pp. 54-66 ◽  
Author(s):  
A. Keen-Zebert ◽  
S. Tooth ◽  
H. Rodnight ◽  
G.A.T. Duller ◽  
H.M. Roberts ◽  
...  

Author(s):  
Md. Shajedul Islam ◽  
M. G. Mostafa

Abstract Arsenic contamination of alluvial aquifers of the Bengal delta plain causes a serious threat to human health for over 75 million people. The study aimed to explore the impacts of chemical fertilizer on arsenic mobilization in the sedimentary deposition of the alluvial Bengal delta plain. It selected ten comparatively higher affected Districts and the least affected two Divisions as a referral study site. The countrywide pooled concentration of arsenic in groundwater was 109.75 μg/L (52.59, 166.91) at a 95% confidence interval, which was double the national guideline value (50 μg/L). The analysis results showed a strong positive correlation (r ≥ 0.5) of arsenic with NO3, NH4, PO4, SO4, Ca, and K, where a portion of those species originated from fertilizer leaching into groundwater. The results showed that PO4 played a significant influence in arsenic mobilization, but the role of NO3, SO4, and NH4 was not clear at certain lithological conditions. It also showed that clay, peat, silt-clay, and rich microbial community with sufficiently organic carbon loaded soils could lead to an increase in arsenic mobilization. Finally, the study observed that the overall lithological conditions are the main reason for the high arsenic load in the study area.


Sign in / Sign up

Export Citation Format

Share Document