guideline value
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 65)

H-INDEX

16
(FIVE YEARS 4)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Wannes Hugo R. Van Hassel ◽  
Mirjana Andjelkovic ◽  
Benoit Durieu ◽  
Viviana Almanza Marroquin ◽  
Julien Masquelier ◽  
...  

In the context of increasing occurrences of toxic cyanobacterial blooms worldwide, their monitoring in Belgium is currently performed by regional environmental agencies (in two of three regions) using different protocols and is restricted to some selected recreational ponds and lakes. Therefore, a global assessment based on the comparison of existing datasets is not possible. For this study, 79 water samples from a monitoring of five lakes in Wallonia and occasional blooms in Flanders and Brussels, including a canal, were analyzed. A Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method allowed to detect and quantify eight microcystin congeners. The mcyE gene was detected using PCR, while dominant cyanobacterial species were identified using 16S RNA amplification and direct sequencing. The cyanobacterial diversity for two water samples was characterized with amplicon sequencing. Microcystins were detected above limit of quantification (LOQ) in 68 water samples, and the World Health Organization (WHO) recommended guideline value for microcystins in recreational water (24 µg L−1) was surpassed in 18 samples. The microcystin concentrations ranged from 0.11 µg L−1 to 2798.81 µg L−1 total microcystin. For 45 samples, the dominance of the genera Microcystis sp., Dolichospermum sp., Aphanizomenon sp., Cyanobium/Synechococcus sp., Planktothrix sp., Romeria sp., Cyanodictyon sp., and Phormidium sp. was shown. Moreover, the mcyE gene was detected in 75.71% of all the water samples.


Separations ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Renli Ma ◽  
John R. Dean

The former St. Antony’s Lead Works site, now the central part of an urban recreational park (Walker Riverside Park) in the east end of Newcastle upon Tyne (England, UK), has been assessed based on the Pb concentration in topsoil according to recently derived Category 4 Screening Level (C4SL) for public open space–park (POSpark, 1300 mg/kg). The site was divided into eight sampling areas following its physical layout. In total 79 soil samples were collected, characterised for acidity and organic matter content, and analysed by energy dispersive X-ray fluorescence (ED-XRF). The Pb levels in most of the samples, particularly those from the fringes of the site, are below the generic guideline value (down to 70 mg/kg). More than 16% of the samples from nearly all sampling areas, especially those sampling points around the former horizontal condenser flue and main chimney, contain levels of Pb significantly exceeding the limit (up to 206,000 mg/kg). No correlation is found between the Pb concentration in soil samples and their acidity (mostly neutral, pH 7.0 ± 0.5) or organic matter content (15.5 ± 4.1%). Using the Contaminated Land Exposure Assessment (CLEA) model (version 1.071), the site-specific risk assessment criteria (SSAC) for Lead (C4SL child), 2862 mg/kg, is obtained based on adjusted exposure frequency and occupancy period. Nearly 9% of the individual sample Pb concentrations (n = 79) across sample locations B, C, D and H are still above the specific value. Further statistical evaluation based on 95% upper confidence limit confirms that the site still represents a potential human health risk. This is because Pb concentrations, from two areas in the centre of the site (sample locations B and C), are greatly over the SSAC specific threshold (sample mean at location B is 12,350 mg/kg and at location C is 11,745 mg/kg).


Environments ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 137
Author(s):  
Peter Brimblecombe ◽  
Meng-Yuan Chu ◽  
Chun-Ho Liu ◽  
Zhi Ning

Busy street canyons can have a large flow of vehicles and reduced air exchange and wind speeds at street level, exposing pedestrians to high pollutant concentrations. The airflow tended to move with vehicles along the canyon and the 1-s concentrations of NO, NO2 and CO were highly skewed close to the road and more normally distributed at sensors some metres above the road. The pollutants were more autocorrelated at these elevated sensors, suggesting a less variable concentration away from traffic in the areas of low turbulence. The kerbside concentrations also showed cyclic changes approximating nearby traffic signal timing. The cross-correlation between the concentration measurements suggested that the variation moved at vehicle speed along the canyon, but slower vertically. The concentrations of NOx and CO were slightly higher at wind speeds of under a metre per second. The local ozone concentrations had little effect on the proportion of NOx present as NO2. Pedestrians on the roadside would be unlikely to exceed the USEPA hourly guideline value for NO2 of 100 ppb. Across the campaign period, 100 individual minutes exceeded the guidelines, though the effect of short-term, high-concentration exposures is not well understood. Tram stops at the carriageway divider are places where longer exposures to higher levels of traffic-associated pollutants are possible.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jajati Mandal ◽  
Sudip Sengupta ◽  
Soumyajit Sarkar ◽  
Abhijit Mukherjee ◽  
Michael D. Wood ◽  
...  

It is now well-established that not just drinking water, but irrigation water contaminated with arsenic (As) is an important source of human As exposure through water-soil-rice transfer. While drinking water As has a permissible, or guideline value, quantification of guideline values for soil and irrigation water is limited. Using published data from 26 field studies (not pot-based experiments) from Asia, each of which reported irrigation water, soil and rice grain As concentrations from the same site, this meta-analysis quantitatively evaluated the relationship between soil and irrigation water As concentrations and the As concentration in the rice grain. A generalized linear regression model revealed As in soil to be a stronger predictor of As in rice than As in irrigation water (beta of 16.72 and 0.6, respectively, p < 0.01). Based on the better performing decision tree model, using soil and irrigation water As as independent variables we determined that Asian paddy soil As concentrations greater than 14 mg kg−1 may result in rice grains exceeding the Codex recommended maximum allowable inorganic As (i-As) concentrations of 0.2 mg kg−1 for polished rice and 0.35 mg kg−1 for husked rice. Both logistic regression and decision tree models, identified soil As as the main determining factor and irrigation water to be a non-significant factor, preventing determination of any guideline value for irrigation water. The seemingly non-significant contribution of irrigation water in predicting grain i-As concentrations below or above the Codex recommendation may be due to the complexity in the relationship between irrigation water As and rice grains. Despite modeling limitations and heterogeneity in meta-data, our findings can inform the maximum permissible As concentrations in Asian paddy soil.


2021 ◽  
Vol 63 (11) ◽  
pp. 17-22
Author(s):  
Thi Duyen Vu ◽  
◽  
The Anh Lang ◽  
Thi Kim Trang Pham ◽  
Hung Viet Pham ◽  
...  

In this study, the author report detailed results of the variation of arsenic in groundwater along a transect in an area near the Hanoi city centre. The results showed that 64% of collected samples exceeded the WHO guideline value for arsenic concentration in drinking water. The arsenic concentration varied in a wide range, strongly depending on the sediment characteristics of each zone along the transect. Aside from As, groundwater in this area also was contaminated by elevated concentrations of Fe, Mn, and ammonium. The study also pointed out a positive correlation between As and reductive chemical species, namely DOC, NH4+, and CH4 in groundwater. Although there is no clear trend in the correlation between As and Fe, Mn, it can be concluded that the formation of arsenic in groundwater in the study area was due to the reductive dissolution of As-bearing iron minerals under the presence of organic matter.


2021 ◽  
Vol 63 (11) ◽  
pp. 19-23
Author(s):  
Thi Duyen Vu ◽  
◽  
Thi Mai Tran ◽  
Thi Kim Trang Pham ◽  
Mai Lan Vi ◽  
...  

Arsenic contamination in groundwater is commonly found in alluvial plains of major river basins, in which the Red river delta has also been reported to be contaminated with high levels of arsenic. In this study, groundwater from 50 household wells was collected to study the spatial distribution of arsenic in northwestern Hanoi. The results showed that arsenic concentration in groundwater varied in a wide range of less than 5 to 334 μg/l, of which up 62% of the wells exceeded the WHO guideline value of 10 μg/l for arsenic content in drinking water. Arsenic groundwater in this area is unevenly distributed throughout the area, high arsenic concentrations are found in a narrow band between Red river and Day river. This pattern of arsenic distribution is strongly related to the sediment age, sedimentary processes, and it is also modified by local groundwater flow parts and the occurrence of hydraulic connection between aquifers, which are observed in the study area. Arsenic is released into the groundwater during the reductive dissolution of arsenic-bearing minerals under the presence of organic matter.


2021 ◽  
Author(s):  
◽  
Chandar Singh

<p>Air pollution is harming our health and that of our children and parents. Air pollution causes many harmful effects, ranging from premature death, to headaches, coughing and asthma attacks. Previous studies (2008-2009) of particulate matter at Wainuiomata, Lower Hutt showed that biomass burning was primarily responsible for peak PM₂.₅ and PM₁₀ concentrations and exceedances of the National Environmental Standard (NES) and the New Zealand Ambient Air Quality Guidelines (NZAAQG). Arsenic was also found to be associated with biomass burning sources during winter at Wainuiomata. The source of arsenic was considered to be due to the use of copper chromium arsenate (CCA) treated timber as solid fuel for fires for domestic heating. While particulate matter pollution from domestic fires itself presents a health risk for the exposed population, the addition of arsenic to the mix enhances the potential risk. The use of CCA treated timber was unlikely to be used on a regular basis hence the peak arsenic concentrations did not always coincide with peak contributions from domestic fires and that the use of CCA – treated timber is more intermittent and opportunistic.  This work compared several different analytical methodologies for the determination of arsenic in air particulate matter. The primary purpose was to use a standard analytical method as recommended by the NZAAQ guidelines and compare those results with the Ion Beam Analysis (IBA) and X-ray Fluorescence Spectroscopy (XRF) methods used to determine arsenic concentrations in previous studies.  Through this collaborative research with GNS Science and GWRC, it was found that annual PM₁₀ and PM₂.₅ averages were well within the NZAAQG values of; 20 μg m⁻³ and 10 μg m⁻³ respectively. There was a much correlated seasonal and temporal variations observed for black carbon (BC), PM₂.₅ and arsenic concentrations. The overall concentrations of BC, PM₂.₅ and PM₁₀ have decreased significantly in the Wainuiomata airshed compared to previous studies as reported in 2009 with fewer exceedances of the NES and NZAAQG on a 24 hour daily average.  The overall weighted mean arsenic concentration as measured by GF-AAS was 6.3 ± 0.8 ng m⁻³ and that measured by XRF and IBA was 3.8 ± 2.0 ng m⁻³ and 3.1 ± 5.9 ng m⁻³ respectively. The XRF and IBA arsenic concentrations were consistently lower than that of GF-AAS. The two annual arsenic averages (GF-AAS) were 6.5 ± 0.9 ng m⁻³ and 5.9 ± 0.7 ng m⁻³ respectively, for the entire sampling period. In both the cases the NZAAQG value of 5.5 ng m⁻³ were exceeded. The exceedance in the second year of sampling was not statistically significant as the guideline value 5.5 ngm⁻³ falls within the given uncertainty of the measured annual averages for arsenic.  However, it is definitely an area of concern as the overall arsenic concentrations during winter periods was 12.2 ± 1.0 ng m⁻³. Moreover, burning CCA treated timber is effectively banned through regional plan rules and the problem presents itself as one of enforcement and/or public education.  The inter-method comparison showed that IBA technique can be used for “screening” purposes due to high limit of detection (LOD) and analytical noise. While XRF can still be used interchangeably with GF-AAS but with Teflon or thinner filter membrane, for long term environmental monitoring of arsenic and other elemental compositions. Given the excellent recoveries of 99.2 ± 0.8% for duplicate spiked analysis and 102.7 ± 0.9% for lab blank filters spiked analysis, at 95% confidence intervals, GF-AAS method is highly reproducible and should be used in the determination of arsenic in ambient air for the purpose of comparing with the NZAAQG values.</p>


2021 ◽  
Author(s):  
◽  
Chandar Singh

<p>Air pollution is harming our health and that of our children and parents. Air pollution causes many harmful effects, ranging from premature death, to headaches, coughing and asthma attacks. Previous studies (2008-2009) of particulate matter at Wainuiomata, Lower Hutt showed that biomass burning was primarily responsible for peak PM₂.₅ and PM₁₀ concentrations and exceedances of the National Environmental Standard (NES) and the New Zealand Ambient Air Quality Guidelines (NZAAQG). Arsenic was also found to be associated with biomass burning sources during winter at Wainuiomata. The source of arsenic was considered to be due to the use of copper chromium arsenate (CCA) treated timber as solid fuel for fires for domestic heating. While particulate matter pollution from domestic fires itself presents a health risk for the exposed population, the addition of arsenic to the mix enhances the potential risk. The use of CCA treated timber was unlikely to be used on a regular basis hence the peak arsenic concentrations did not always coincide with peak contributions from domestic fires and that the use of CCA – treated timber is more intermittent and opportunistic.  This work compared several different analytical methodologies for the determination of arsenic in air particulate matter. The primary purpose was to use a standard analytical method as recommended by the NZAAQ guidelines and compare those results with the Ion Beam Analysis (IBA) and X-ray Fluorescence Spectroscopy (XRF) methods used to determine arsenic concentrations in previous studies.  Through this collaborative research with GNS Science and GWRC, it was found that annual PM₁₀ and PM₂.₅ averages were well within the NZAAQG values of; 20 μg m⁻³ and 10 μg m⁻³ respectively. There was a much correlated seasonal and temporal variations observed for black carbon (BC), PM₂.₅ and arsenic concentrations. The overall concentrations of BC, PM₂.₅ and PM₁₀ have decreased significantly in the Wainuiomata airshed compared to previous studies as reported in 2009 with fewer exceedances of the NES and NZAAQG on a 24 hour daily average.  The overall weighted mean arsenic concentration as measured by GF-AAS was 6.3 ± 0.8 ng m⁻³ and that measured by XRF and IBA was 3.8 ± 2.0 ng m⁻³ and 3.1 ± 5.9 ng m⁻³ respectively. The XRF and IBA arsenic concentrations were consistently lower than that of GF-AAS. The two annual arsenic averages (GF-AAS) were 6.5 ± 0.9 ng m⁻³ and 5.9 ± 0.7 ng m⁻³ respectively, for the entire sampling period. In both the cases the NZAAQG value of 5.5 ng m⁻³ were exceeded. The exceedance in the second year of sampling was not statistically significant as the guideline value 5.5 ngm⁻³ falls within the given uncertainty of the measured annual averages for arsenic.  However, it is definitely an area of concern as the overall arsenic concentrations during winter periods was 12.2 ± 1.0 ng m⁻³. Moreover, burning CCA treated timber is effectively banned through regional plan rules and the problem presents itself as one of enforcement and/or public education.  The inter-method comparison showed that IBA technique can be used for “screening” purposes due to high limit of detection (LOD) and analytical noise. While XRF can still be used interchangeably with GF-AAS but with Teflon or thinner filter membrane, for long term environmental monitoring of arsenic and other elemental compositions. Given the excellent recoveries of 99.2 ± 0.8% for duplicate spiked analysis and 102.7 ± 0.9% for lab blank filters spiked analysis, at 95% confidence intervals, GF-AAS method is highly reproducible and should be used in the determination of arsenic in ambient air for the purpose of comparing with the NZAAQG values.</p>


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3149
Author(s):  
Daryl P. Stevens ◽  
Vivek Daniel ◽  
Esmaeil Shahsavari ◽  
Arturo Aburto-Medina ◽  
Sarvesh K. Soni ◽  
...  

Understanding and managing the risk posed by helminth eggs (HE) is a key concern for wastewater engineers and public health regulators. The treatment processes that produce recycled water from sewage at wastewater treatment plants (WWTPs) rely on achieving a defined log10 reduction value (LRV) in HE concentration during the production of recycled water from sewage to achieve the guideline concentration of ≤1.0 HE/L. The total concentration of HE in sewage reaches thousands of HE/L in developing countries and therefore, an LRV of 4.0 is generally accepted to achieve a safe concentration in recycled water, as this will meet the guideline value. However, in many developed countries with good sanitation and public health standards, the HE concentration in sewage is generally <10 HE/L. Therefore, validation of the sewage treatment process relied on to achieve an LRV of 4.0 can be difficult. Because of these limitations, design equations to predict LRVs from hydraulic retention times (HRT), which are geographically non-specific, are commonly relied on to ensure the production of safe quality recycled water with respect to HE. However, these design equations could be further refined by defining the design and management of the treatment process in greater detail and thus be used more effectively for determining the LRV required. This paper discusses the limitations and possible improvements that could be applied to LRV design equations for predicting HE removal at WWTPs and identifies the data requirements to support these improvements. Several options for LRV design equations are proposed that could be validated experimentally or via the ongoing operation of WWTPs. These improvements have the potential to assist the rationalization of the HE removal requirements for specific treatment options, exposure scenarios and use of recycled water in agriculture.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3143
Author(s):  
Danica Fazekašová ◽  
Juraj Fazekaš ◽  
Lenka Štofejová

The focus of this work is on the evaluation of selected water quality indicators as per the applicable regulations, taking into account European and national legislation and the evaluation of the risk of contamination of surface waters with toxic elements using the contamination factor (Cfi) and the degree of pollution (Cd). The studied area of Slovinky is an important ore region, with rich deposits of copper and silver ores that have been mined for centuries. One of the most important remnants of mining activities in this area is the Slovinky tailing impoundment. The sludge pond area has an area of 15 ha, and the height of the dam is 113 metres above sea level, which makes the sludge pond one of the tallest water structures in Slovakia. The Slovinský creek was monitored in the years 2010, 2011, and 2019 at five sampling points, which were selected to map the entire length of the water flow from the source to the estuary to the river Hornád. Risk elements (As, Cu, Cd, and Fe) and physicochemical parameters (such as temperature, dissolved oxygen concentration, conductivity, resistivity, salinity, total dissolved solids, NaCl, redox potential, and pH) were included in this study and evaluated according to applicable regulations, taking into account European legislation (Act No. 269/2010 Coll., guideline value WHO 2011). The results of the experimental studies showed that the highest values of As and Cu were measured at the site where drainage waters from the Slovinky tailing impoundment and mining water of the Alžbeta shaft flow into the creek. The concentration of As exceeded the limit value by up to 31 times and the concentration of Cu 16.8–134.5 times. At the same time, the highest values of conductivity, salinity, total dissolved solids, and NaCl were found, and there was no acidification of water at the site that had the highest pollution. Water contamination was assessed based on Cfi and Cd; our findings showed that the surface water from the site of contamination, along the entire length of the stream, was very highly contaminated with risk elements in the order of As > Fe > Cu, and the level of contamination decreased with distance from the site of contamination. Our research shows that seepage of toxic substances from sludge ponds and abandoned mines has caused the requirements for the quality of surface water of the Slovinský creek not to be met. In connection with mining activities, surface streams act as a transport medium through which other components of the environment can be polluted.


Sign in / Sign up

Export Citation Format

Share Document