ice content
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 100)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 14 (4) ◽  
pp. 55-66 ◽  
Author(s):  
Valery I. Grebenets ◽  
Vasily A. Tolmanov ◽  
Dmitry A. Streletskiy

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.


2021 ◽  
Author(s):  
Jean-Marie Lalande ◽  
Guillaume Bourmaud ◽  
Pierre Minvielle ◽  
Jean-François Giovannelli

Abstract. Spatiotemporal statistical learning has received increased attention in the past decade, due to spatially and temporally indexed data proliferation, especially collected from satellite remote sensing. In the mean time, observational studies of clouds are recognized as an important step to improve cloud representation in weather and climate models. Since 2006, the satellite CloudSat of NASA carries a 94 GHz cloud profiling radar and is able to retrieve, from radar reflectivity, microphysical parameter distribution such as water or ice content. The collected data is piled up with the successive satellite orbits of nearly two hours, leading to a large compressed database of 2 Tb (http://cloudsat.atmos.colostate.edu/). These observations give the opportunity to extend the cloud microphysical properties beyond the actual measurement locations using an interpolation and prediction algorithm. In order to do so, we introduce a statistical estimator based on the spatiotemporal covariance and mean of the observations known as kriging. An adequate parametric model for the covariance and the mean is chosen from an exploratory data analysis. Beforehand, it is necessary to estimate the parameters of this spatiotemporal model; This is performed in a Bayesian setting. The approach is then applied to a subset of the CloudSat dataset.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052079
Author(s):  
A Galkin ◽  
V Pankov

Abstract An important quantity determining the choice of technical solutions in design of both surface and underground structures in the permafrost area is the thawing depth of the rocks. To obtain simple analytical relations to determine the thawing depth over time, a simple assumption is used: that the initial temperature of the rocks is equal to the melting temperature of ice. The aim of the present work was the assessment of impact of this assumption on the forecast precision. For a quantitative assessment, a simple typical formula recommended by construction norms was used. Functional dependence of the density of the rocks and their heat capacity on the fraction of ice content was considered in the formulas. A rock consisting of a combination of quartz sand and ice was used as an example.Multiple variant calculations were done according to the formulas and their results presented in the form of charts. It was shown that the relative error in determination of thawing depth depends solely on the Stefan criterion and is independent of the thawing duration, thermal conductivity coefficient of the thawing rocks and the air temperature during the thawing. A relation was obtained which allows to quickly assess at which initial values (temperature and ice content of the frozen rocks) it is possible to use the formulas obtained from the simplified calculation models with the assumption that the temperature of the rocks is equal to the melting temperature of ice.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052076
Author(s):  
A F Galkin ◽  
V Yu Pankov

Abstract Protection of automobile roads from negative cryogenic processes is a current issue to which significant attention is devoted in both scientific and engineering communities. In many cases important for practice, the the thermal factor determines the reliability and security of the use of the road in the cryolithic zone. The heat capacity of dispersed rocks is among the most important indicators of the physical properties determining the intensity of thermal processes in the road surfaces and road foundations. The precision of determination of the total heat capacity of the rocks in thawed and frozen state largely determines the precision of the forecast of the thermal regime of roads in the cryolithic zone. A complex assessment of the impact of ice content of the dispersed rocks on the value of total heat capacity was done. 2D and 3D charts which allow to assess the possible range of change in the heat capacity of the dispersed rocks in thawed and frozen state, in both a wide range and in the typical range of values, were produced. Among the main criteria determining the extent of the seasonal freezing and thawing of the soils of the active layer is the Stefan number, a dimensionless criterion. An overall assessment of the impact of ice content on the ground (rock) foundations of the roads and of the air temperature in the warm period of the year on the quantitative values of the Stefan number was done. Charts allowing to determine in both a wide and typical range the changes of values of the Stefan numbers, permitting to assess the possible range of changes of the Stefan number, were made. It was determined, in particular, that for the typical dispersed rocks of the road foundations in the cryolithic zone the range of change in the Stefan numbers is 2.1-6.5.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012055
Author(s):  
Y Kishimoto

Abstract It is commonly considered that frost damage is caused by sudden freezing of supercooled water, which is a random phenomenon. Therefore, the aims of this study are to establish a prediction model for the probability of freezing until any lowest reached temperature, and to obtain the probability distribution function of the freezing point for the proposed analytical prediction model. First, theoretical prediction model for the probability of the instantaneous increment of ice content when lowest achieving temperature was known was derived based on these assumptions that building structure is an aggregation of small elements. Next, the freezing point measurement was carried out by using saturated mortar samples as the small element. As the results, it could be found that the first freezing due to supercooling occurred from -4 to -11 deg. C and the maximum probability was appeared at -7.5 deg. C. The average increment of ice content at every temperature closed to the 40 % volume of pore water until the thermodynamically-based freezing point. Moreover, the proposed method that can calculate the probability distributions of the instantaneous increment of ice content for any lowest achieving temperature from pore size distribution had good agreements with the measurement results.


2021 ◽  
Author(s):  
Yili Lu ◽  
Wei Peng ◽  
Tusheng Ren ◽  
Robert Horton

Advanced sensors provide new opportunities to improve the understanding of soil properties and processes. One such sensor is the thermo-TDR sensor, which combines the functions of heat pulse probes and time domain reflectometry probes. Recent advancements in fine-scale measurements of soil thermal, hydraulic, and electrical properties with the thermo-TDR sensor enable measuring soil state variables (temperature, water content, and ice content), thermal and electrical properties (thermal diffusivity, heat capacity, thermal conductivity, and bulk electrical conductivity), structural parameters (bulk density and air-filled porosity) and fluxes (heat, water, and vapor) simultaneously. This chapter describes the theory, methodology, and potential applications of the thermo-TDR technique.


2021 ◽  
Vol 2 ◽  
Author(s):  
Viktor Kaufmann ◽  
Andreas Kellerer-Pirklbauer ◽  
Gernot Seier

Rock glaciers are creep phenomena of mountain permafrost. Speed-up has been observed on several rock glaciers in recent years and attributed to climate change. Although rare, related long-term studies are nevertheless essential to bring a climate perspective to creep velocity changes. In the present study, we focused on changes both in the surface creep velocity and volume of the Leibnitzkopf rock glacier (Hohe Tauern Range, Austria) in the period 1954–2020. We applied 3D change detection using aerial images of both conventional (12 epochs between 1954 and 2018) and unmanned aerial vehicle (UAV)-based aerial surveys (2 epochs, 2019 and 2020), and combined this with ground and air temperature data. Photogrammetric processing (structure-from-motion, multi-view stereo) of the multi-temporal dataset resulted in high-resolution digital orthophotos/DOPs (5–50 cm spatial resolution) and digital elevation models/DEMs (10–50 cm grid spacing). Georeferencing was supported by five externally triangulated images from 2018, bi-temporal aerial triangulation of the image data relying on stable ground around the rock glacier, measured ground control points (2019 and 2020), and measured camera locations (PPK-GNSS) of the UAV flight in 2020. 2D displacement vectors based on the multi-temporal DOPs and/or DEMs were computed. Accuracy analyses were conducted based on geodetic measurements (2010–2020) and airborne laser scanning data (2009). Our analyses show high multi-annual and inter-annual creep velocity variabilities with maxima between 12 (1974–1981) and 576 cm/year (2019–2020), always detected in the same area of the rock glacier where surface disintegration was first observed in 2018. Our volume change analyses of the entire landform for the period 1954–2018 do not indicate any significant changes. This suggests little permafrost ice melt and/or general low ice content of the rock glacier. Analyses of the temperature data reveal a close relationship between higher temperatures and rock glacier acceleration despite the high probability of low ice content. This suggests that hydrogeological changes play an important role in the rock glacier system. The paper concludes with a summary of technical improvements and recommendations useful for rock glacier monitoring and a general view on the kinematic state of the Leibnitzkopf rock glacier.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hotaek Park ◽  
Alexander N. Fedorov ◽  
Pavel Konstantinov ◽  
Tetsuya Hiyama

Excess ice that exists in forms such as ice lenses and wedges in permafrost soils is vulnerable to climate warming. Here, we incorporated a simple representation of excess ice in a coupled hydrological and biogeochemical model (CHANGE) to assess how excess ice affects permafrost thaw and associated hydrologic responses, and possible impacts on carbon dioxide and methane (CH4) fluxes. The model was used to simulate a moss-covered tundra site in northeastern Siberia with various vertical initializations of excess ice under a future warming climate scenario. Simulations revealed that the warming climate induced deepening of the active layer thickness (ALT) and higher vegetation productivity and heterotrophic respiration from permafrost soil. Meanwhile, excess ice temporarily constrained ALT deepening and thermally stabilized permafrost because of the highest latent heat effect obtained under these conditions. These effects were large under conditions of high excess ice content distributed in deeper soil layers, especially when covered by moss and thinner snow. Once ALT reached to the layer of excess ice, it was abruptly melted, leading to ground surface subsidence over 15–20 years. The excess ice meltwater caused deeper soil to wet and contributed to talik formation. The anaerobic wet condition was effective to high CH4 emissions. However, as the excess ice meltwater was connected to the subsurface flow, the resultant lower water table limited the CH4 efflux. These results provide insights for interactions between warming climate, permafrost excess ice, and carbon and CH4 fluxes in well-drained conditions.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6251
Author(s):  
Qingsong Deng ◽  
Xiao Liu ◽  
Chao Zeng ◽  
Xianzhi He ◽  
Fengguang Chen ◽  
...  

Seasonally frozen soil where uneven freeze–thaw damage is a major cause of highway deterioration has attracted increased attention in China with the rapid development of infrastructure projects. Based on Darcy’s law of unsaturated soil seepage and heat conduction, the thermal–hydraulic–mechanical (THM) coupling model is established considering a variety of effects (i.e., ice–water phase transition, convective heat transfer, and ice blocking effect), and then the numerical solution of thermal–hydraulic fields of subgrade can be obtained. Then, a new concept, namely degree of freeze–thaw damage, is proposed by using the standard deviation of the ice content of subgrade during the annual freeze–thaw cycle. To analyze the freeze–thaw characteristics of highway subgrade, the model is applied in the monitored section of the Golmud to Nagqu portion of China National Highway G109. The results show that: (1) The hydrothermal field of subgrade has an obvious sunny–shady slopes effect, and its transverse distribution is not symmetrical; (2) the freeze–thaw damage area of subgrade obviously decreased under the insulation board measure; (3) under the combined anti-frost measures, the maximum frost heave amount of subgrade is significantly reduced. This study will provide references for the design of highway subgrades in seasonally frozen soil areas.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Matthias Müller ◽  
Horst-Michael Ludwig ◽  
Marianne Tange Hasholt

AbstractScaling of concrete due to salt frost attack is an important durability issue in moderate and cold climates. The actual damage mechanism is still not completely understood. Two recent damage theories—the glue spall theory and the cryogenic suction theory—offer plausible, but conflicting explanations for the salt frost scaling mechanism. The present study deals with the cryogenic suction theory, which assumes that freezing concrete can take up unfrozen brine from a partly frozen deicing solution during salt frost attack. According to the model hypothesis, the resulting saturation of the concrete surface layer intensifies the ice formation in this layer and causes salt frost scaling. In this study an experimental technique was developed that makes it possible to quantify to which extent brine uptake can increase ice formation in hardened cement paste (used as a model material for concrete). The experiments were carried out with low temperature differential scanning calorimetry, where specimens were subjected to freeze–thaw cycles while being in contact with NaCl brine. Results showed that the ice content in the specimens increased with subsequent freeze–thaw cycles due to the brine uptake at temperatures below 0 °C. The ability of the hardened cement paste to bind chlorides from the absorbed brine at the same time affected the freezing/melting behavior of the pore solution and the magnitude of the ice content.


Sign in / Sign up

Export Citation Format

Share Document