Nature's complex flume — Using a diagnostic state-and-transition framework to understand post-restoration channel adjustment of the Clark Fork River, Montana

Geomorphology ◽  
2016 ◽  
Vol 254 ◽  
pp. 1-15 ◽  
Author(s):  
Chris Van Dyke
2010 ◽  
Vol 7 (1) ◽  
pp. 82 ◽  
Author(s):  
K. L. Plathe ◽  
F. von der Kammer ◽  
M. Hassellöv ◽  
J. Moore ◽  
M. Murayama ◽  
...  

Environmental context. Determining associations between trace metals and nanoparticles in contaminated systems is important in order to make decisions regarding remediation. This study analysed contaminated sediment from the Clark Fork River Superfund Site and discovered that in the <1-μm fraction the trace metals were almost exclusively associated with nanoparticulate Fe and Ti oxides. This information is relevant because nanoparticles are often more reactive and show altered properties compared with their bulk equivalents, therefore affecting metal toxicity and bioavailability. Abstract. Analytical transmission electron microscopy (aTEM) and flow field flow fractionation (FlFFF) coupled to multi-angle laser light scattering (MALLS) and high-resolution inductively coupled plasma mass spectroscopy (HR-ICPMS) were utilised to elucidate relationships between trace metals and nanoparticles in contaminated sediment. Samples were obtained from the Clark Fork River (Montana, USA), where a large-scale dam removal project has released reservoir sediment contaminated with toxic trace metals (namely Pb, Zn, Cu and As) which had accumulated from a century of mining activities upstream. An aqueous extraction method was used to recover nanoparticles from the sediment for examination; FlFFF results indicate that the toxic metals are held in the nano-size fraction of the sediment and their peak shapes and size distributions correlate best with those for Fe and Ti. TEM data confirms this on a single nanoparticle scale; the toxic metals were found almost exclusively associated with nano-size oxide minerals, most commonly brookite, goethite and lepidocrocite.


Author(s):  
Chunmei Liu ◽  
Huilong Zhu ◽  
Xin Xie ◽  
Zhiyuan Hu ◽  
Dawei Bi ◽  
...  

2019 ◽  
Vol 50 (2) ◽  
pp. 417-430 ◽  
Author(s):  
Tímea Kiss ◽  
Károly Fiala ◽  
György Sipos ◽  
Gábor Szatmári

Abstract Engineering works have affected the morphology of rivers (e.g., by cut-offs, artificial levees, revetments, and reservoir and dam constructions). These human impacts also have hydrological impacts, as they alter the natural channel geometry, affect the carrying capacity of the channel and confine the floodplains. The goals of the present paper are to analyse flow changes for the Tisza River (in Hungary) with its highly regulated channel using a long (141 y) daily hydrologic dataset and to evaluate the engineering works from the point of hydrological and morphological equilibrium. Since the late 19th century, the flood level along the Lower Tisza River has increased by 216 cm; further, since 1998, flood levels increased by over 80 cm without an increase in discharge. In addition, river stages for low flows have decreased, and the water slope has decreased. These changes are likely connected to morphological changes in the channel (e.g., incision, narrowing, disappearance of point bars, intensifying mass movements), which have been driven by the complex response to human impacts. While the channel could adjust itself to convey larger floods after the cut-offs, the revetments impede the channel adjustment and contribute to the hydrological and morphological disequilibrium state along the Tisza River.


1994 ◽  
Vol 13 (12) ◽  
pp. 1971-1983 ◽  
Author(s):  
W.G. Brumbaugb ◽  
C.G. Ingersoll ◽  
N.E. Kemble ◽  
T.W. May ◽  
J.L. Zajicek

Sign in / Sign up

Export Citation Format

Share Document