Hydrology Research
Latest Publications


TOTAL DOCUMENTS

2045
(FIVE YEARS 284)

H-INDEX

51
(FIVE YEARS 6)

Published By Iwa Publishing

2224-7955, 0029-1277

2021 ◽  
Author(s):  
Shuo Yan ◽  
Zhuowei Wang ◽  
Leixiang Wu ◽  
Wei Huang

Abstract In recent times, social water use has overstepped into the domain of ecological water use, disrupting environmental flow and, thus, destroying the ecological environment. This research aims to coordinate social and natural water use to bring about optimal economic benefits, while ensuring environmental flow requirements. In this study, an interval two-stage fuzzy shadow price model (ITS-SPM) has been developed, which combines two-stage programming (TSP) and system of water value to optimize environmental flow. The ITS-SPM is mainly characterized as system benefits constituted by expected water resource benefits and water shortage penalty. This model has removed the uncertainties of economic data and environmental water demand (expressed fuzzy and interval). It has been found that adjusting the social water structure can effectively solve the problem of insufficient ecological flow. The ITS-SPM can make the adjustment of social water use more reasonable, which will produce benefits, unlike the current agricultural water reduction policy. Under the premise of guaranteeing optimal economic benefits, the added value of environmental water use in different scenarios is (social water structure adjustment) as follows: in 2020, it was expected that Shaying River water would increase by at least 13.49%; in 2025, it is expected to increase by at least 33.35%; in 2030, the increase will be by at least 57.54%; and in 2035, it will be by at least 77.50%.


2021 ◽  
Author(s):  
Reyhaneh Akbari ◽  
Masoud-Reza Hessami-Kermani

Abstract The Muskingum routing model is favored by water engineers owing to its simplicity and accuracy. A large amount of research is done to improve the accuracy of the model. One way to do so is to consider variable hydrological parameters during the flood routing period. In this study, the random selection (RS) method was proposed to divide the flood period of the nonlinear Muskingum model into three sub-periods. The proposed method was based on RS of members in each sub-region. It was applied to rout three flood hydrographs, and the objective function was the sum of squared errors. Comparing the results from the three variable-parameter nonlinear Muskingum model with those from the variable-parameter nonlinear Muskingum models in previous studies, the proposed model optimized the objective function in these hydrographs up to 61%. The uncertainty analysis of Muskingum parameters for Wilson's hydrograph was performed by the fuzzy alpha cut method, and it was found that the uncertainty of the parameter x is greater than the uncertainty of the parameters k and m.


2021 ◽  
Author(s):  
Tian Liu ◽  
Binquan Li ◽  
Luyi Jin ◽  
Shiwu Wang ◽  
Jinhua Wen ◽  
...  

Abstract To estimate the probable maximum precipitation (PMP) in a changing climate, this study proposes a new PMP estimation framework based on weather research forecasting (WRF) initialed with temperature (predicted by post-processing) for changing climate conditions. First, in order to determine temperature disturbance influencing PMP under climate change, a random forest (RF) model considering error correction is introduced to predict the temperature in the future. Results show that the revised RF model could improve accuracy in temperature prediction. Furthermore, numerical experiments of disturbance amplification of three factors (humidity, wind speed, and temperature) using the WRF model are conducted. This new scheme could consider the effect of three elements (horizontal range, vertical layer, and ratio) of influencing factors’ maximization on PMP. Results indicate that for the most unfavorable precipitation scenario of each factor magnification, the combination of three elements is different. Then, the joint amplification numerical experiments of three factors proved the existence of their interactions when multi-factors changed simultaneously. Finally, this method was tested in a high-mountain basin, the Upper Nujiang River Basin. Results showed that the increase of wind speed plays a leading role in rainfall enhancement, and the rising of relative humidity and temperature has a certain disturbance effect on rainfall.


2021 ◽  
Author(s):  
Liu Yang ◽  
Jiaxi Tian ◽  
Yuanhai Fu ◽  
Bin Zhu ◽  
Xu He ◽  
...  

Abstract Whether there is a transition underway, from a warm-dry climate to a warm-wet climate in Northwest China remains a controversial and scientifically significant issue. Will this trend continue in the future? Another hot issue is whether the climate in Northwest China will continue to be warm and humid over the next few decades. In this paper, eight CMIP6 models were employed to investigate temperature and precipitation changes under five principal Shared Socioeconomic Pathway (SSP) scenarios (from 2015 to 2099) to project the future warming and humidification in Northwest China using the SPEI (standardized precipitation evapotranspiration index) method. The results revealed that (1) the simulated temperature and precipitation of eight CMIP6 models were consistent with that of observed data during 1961–2014, which showed an increase of approximately 28.2 mm, while simulated data revealed an increase of approximately 9.4 mm. The annual precipitation gradually decreased from Eastern Inner Mongolia and the Southern Northwest Mongolia region (>700 mm) to the Central Northwest Mongolia region (<100 mm) from 1961 to 2014; (2) the MME significantly overestimated the temperature and slightly underestimated the precipitation in Northwest Mongolia. The temperature difference between the simulated and observed data was approximately 0.4 °C. The observed data showed an increase of approximately 0.9 °C from 1961 to 2014, whereas the simulated data revealed an increase of approximately 0.7 °C; (3) in the SSP5-8.5 scenario, the percentage of precipitation anomalies at 1.5, 2, 3, and 4 °C were 166.64, 190.58, 226.44, and 274.56%, respectively; thus, alleviating the drought situation while facilitating the warm-dry to warm-wet climate transition; (4) the water balance between rising temperatures and increased evapotranspiration resulting from increased precipitation suggested that not all sites will be wet in the future. There was still a drying trend in some areas, where drought was more severe under the high emissions scenario than the low emissions scenario.


2021 ◽  
Author(s):  
Roghayeh Ghasempour ◽  
Kiyoumars Roushangar ◽  
V. S. Ozgur Kirca ◽  
Mehmet Cüneyd Demirel

Abstract Beside in situ observations, satellite-based products can provide an ideal data source for spatiotemporal monitoring of drought. In this study, the spatiotemporal pattern of drought was investigated for the northwest part of Iran using ground- and satellite-based datasets. First, the Standardized Precipitation Index series were calculated via precipitation data of 29 sites located in the selected area and the CPC Merged Analysis of Precipitation satellite. The Maximal Overlap Discrete Wavelet Transform (MODWT) was used for obtaining the temporal features of time series, and further decomposition was performed using Ensemble Empirical Mode Decomposition (EEMD) to have more stationary time series. Then, multiscale zoning was done based on subseries energy values via two clustering methods, namely the self-organizing map and K-means. The results showed that the MODWT–EEMD–K-means method successfully identified homogenous drought areas. On the other hand, correlation between the satellite sensor data (i.e. the Normalized Difference Vegetation Index, the Vegetation Condition Index, the Vegetation Healthy Index, and the Temperature Condition Index) was evaluated. The possible links between central stations of clusters and satellite-based indices were assessed via the wavelet coherence method. The results revealed that all applied satellite-based indices had significant statistical correlations with the ground-based drought index within a certain period.


2021 ◽  
Author(s):  
Yu Li ◽  
Xin-Min Zeng ◽  
Jiali Guo

Abstract This paper presents the evaluation of a multisite statistical weather generator (MulGETS: Multisite weather Generator of École de Technologie Supérieure) based on its simulation effect of precipitation in the Yangtze River Basin. MulGETS effectively generates spatially correlated sequences of precipitation simultaneously, while maintaining their spatial and temporal distribution characteristics. On the spatial scales, the accuracy of the model varies from station to station, and in general, the errors are lower at stations in the middle and lower reaches of the Yangtze River Basin than in the upper reaches. This difference is likely to exist because of the lower amount of rainfall and more complex topography than those of the upper river basins. On the temporal scales, the simulated values are more precise on the annual scale than on the seasonal scale. Large relative errors occur more frequently in winter, ranging from −35% to 25%. MulGETS can consistently produce precipitation by considering the intensity, magnitude, and duration indices with sub-basin varied observations. However, the precipitation maxima were much lower than the observations. This work shows the general reasonability of the model in downscaling precipitation in the Yangtze River Basin.


2021 ◽  
Author(s):  
Han Zhang ◽  
Jungang Luo ◽  
Jingyan Wu ◽  
Mengjie Yu

Abstract Flash floods show strong regional differentiation in spatial–temporal distribution and driving forces, thereby hindering their effective prevention and control. This study analyzed the spatiotemporal characteristics of flash floods in Shaanxi Province, China, differentiated among the northern Shaanxi (NS), Guanzhong (GZ), and southern Shaanxi (SS) regions based on the Mann–Kendall, Theil–Sen Median, and standard deviation ellipse methods. The main factors driving disasters and their interactions in each region were then identified within the three categories of precipitation factor (PPF), surface environment factor, and human activity factor (HAF) based on a geographical detector. Finally, the differences in flash flood characteristics among the NS, GZ, and SS regions were analyzed. The results showed that flash floods in Shaanxi Province are greatly affected by the PPF and the HAF, although the spatial–temporal characteristics and disaster-causing factors were significantly different in each region. The regions were ranked according to the number and growth trends of flash floods as follows: SS > GZ > NS. Furthermore, flash floods were affected by multiple factors, with the interaction between factors acting as a driving force of flash floods. The results of this study can provide a reference for the management of flash floods under regional differentiation.


2021 ◽  
Author(s):  
Lan Ma ◽  
Qiang Huang ◽  
Shengzhi Huang ◽  
Dengfeng Liu ◽  
Guoyong Leng ◽  
...  

Abstract According to the widely accepted definition of drought, meteorological and hydrological droughts originally develop from rainfall and runoff deficits, respectively. Runoff deficit is mainly derived from rainfall deficit, and the propagation from meteorological drought to hydrological drought is critical for agricultural water management. Nevertheless, the characteristics and dynamics of drought propagation in the spatiotemporal scale remain unresolved. To this end, the characteristics and dynamics of drought propagation in different seasons and their linkages with key forcing factors are evaluated. In this study, meteorological and hydrological droughts are characterized by the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), respectively. Propagation time is identified by the corresponding timescale of the maximum correlation coefficient between the SPI and the SRI. Then, a 20-year sliding window is adopted to explore the propagation dynamic in various seasons. Furthermore, the multiple linear regression model is established to quantitatively explore the influence of meteorological factors, underlying surface features and teleconnection factors on the propagation time variations. The Wei River Basin, a typical Loess Plateau watershed in China, is selected as a case study. Results indicate the following: (1) the propagation time from meteorological to hydrological drought is shorter in summer (2 months) and autumn (3 months), whereas it is longer in spring (8 months) and winter (13 months). Moreover, the propagation rates exhibit a decreasing trend in warm seasons, which, however, show an increasing trend in cold seasons; (2) a significant slowing propagation in autumn is mainly caused by the decreasing soil moisture and precipitation, whereas the non-significant tendency in summer is generally induced by the offset between insignificant increasing precipitation and significant decreasing soil moisture; (3) the replenishment from streamflow to groundwater in advance prompts the faster propagation from meteorological to hydrological drought in spring and winter and (4) teleconnection factors have strong influences on the propagation in autumn, in which Arctic Oscillation, El Niño-Southern Oscillation and Pacific Decadal Oscillation mainly affect participation, arid index and soil moisture, thereby impacting drought propagation.


2021 ◽  
Author(s):  
Yanlai Zhou ◽  
Shenglian Guo ◽  
Chong-Yu Xu ◽  
Lihua Xiong ◽  
Hua Chen ◽  
...  

Abstract Quantifying the uncertainty of non-stationary flood frequency analysis is very crucial and beneficial for planning and design of water engineering projects, which is fundamentally challenging especially in the presence of high climate variability and reservoir regulation. This study proposed an integrated approach that combined the Generalized Additive Model for Location, Scale and Shape parameters (GAMLSS) method, the Copula function and the Bayesian Uncertainty Processor (BUP) technique to make reliable probabilistic interval estimations of design floods. The reliability and applicability of the proposed approach were assessed by flood datasets collected from two hydrological monitoring stations located in the Hanjiang River of China. The precipitation and the reservoir index were selected as the explanatory variables for modeling the time-varying parameters of marginal and joint distributions using long-term (1954–2018) observed datasets. First, the GAMLSS method was employed to model and fit the time-varying characteristics of parameters in marginal and joint distributions. Second, the Copula function was employed to execute the point estimations of non-stationary design floods. Finally, the BUP technique was employed to perform the interval estimations of design floods based on the point estimations obtained from the Copula function. The results demonstrated that the proposed approach can provide reliable probabilistic interval estimations of design floods meanwhile reducing the uncertainty of non-stationary flood frequency analysis. Consequently, the integrated approach is a promising way to offer an indication on how design values can be estimated in a high-dimensional problem.


Author(s):  
Aleksi Salla ◽  
Heidi Salo ◽  
Harri Koivusalo

Abstract This simulation study focused on the hydrological effects of climate change and controlled drainage operated with subsurface drains and an open collector ditch in an agricultural field. The objective was to understand the potential of controlled drainage and open ditch schemes for managing groundwater levels and field water balance in climate conditions projected to take place in Finland during the 21st century with representative concentration pathways 8.5 and 2.6. A methodological aim was to find ways to condense hourly hydrological results to understand future changes in field hydrology. During the historical reference interval (1970–2005), controlled drainage caused 17–36 cm higher mean groundwater levels and decreased the mean annual drain discharge by 11–23% compared to conventional subsurface drainage. Controlled drainage was projected to increase groundwater levels by additional 1–4 cm in the future compared to its effect on drainage during the reference interval. The effect on annual drain discharge did not change significantly. The open collector ditch lowered groundwater tables and diminished the effect of controlled drainage on groundwater levels in the vicinity of the ditch. Controlled drainage was shown to remain an effective method for countering early summer drought and reducing drain discharge.


Sign in / Sign up

Export Citation Format

Share Document