pore water
Recently Published Documents


TOTAL DOCUMENTS

3202
(FIVE YEARS 701)

H-INDEX

91
(FIVE YEARS 11)

2022 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
Jinhuan Zhao ◽  
Changling Liu ◽  
Chengfeng Li ◽  
Yongchao Zhang ◽  
Qingtao Bu ◽  
...  

Characterizing the electrical property of hydrate-bearing sediments is essential for hydrate reservoir identification and saturation evaluation. As the major contributor to electrical conductivity, pore water is a key factor in characterizing the electrical properties of hydrate-bearing sediments. The objective of this study is to clarify the effect of hydrates on pore water and the relationship between pore water characteristics and the saturation exponent of Archie’s law in hydrate-bearing sediments. A combination of X-ray computed tomography and resistivity measurement technology is used to derive the three-dimensional spatial structure and resistivity of hydrate-bearing sediments simultaneously, which is helpful to characterize pore water and investigate the saturation exponent of Archie’s law at the micro-scale. The results show that the resistivity of hydrate-bearing sediments is controlled by changes in pore water distribution and connectivity caused by hydrate formation. With the increase of hydrate saturation, pore water connectivity decreases, but the average coordination number and tortuosity increase due to much smaller and more tortuous throats of pore water divided by hydrate particles. It is also found that the saturation exponent of Archie’s law is controlled by the distribution and connectivity of pore water. As the parameters of connected pore water (e.g., porosity, water saturation) decrease, the saturation exponent decreases. At a low hydrate-saturation stage, the saturation exponent of Archie’s law changes obviously due to the complicated pore structure of hydrate-bearing sediments. A new logarithmic relationship between the saturation exponent of Archie’s law and the tortuosity of pore water is proposed which helps to calculate field hydrate saturation using resistivity logging data.


2022 ◽  
Author(s):  
Sahila Beegum ◽  
P J Jainet ◽  
Dawn Emil ◽  
K P Sudheer ◽  
Saurav Das

Abstract Soil pore water pressure analysis is crucial for understanding landslide initiation and prediction. However, field-scale transient pore water pressure measurements are complex. This study investigates the integrated application of simulation models (HYDRUS-2D/3D and GeoStudio–Slope/W) to analyze pore water pressure-induced landslides. The proposed methodology is illustrated and validated using a case study (landslide in India, 2018). Model simulated pore water pressure was correlated with the stability of hillslope, and simulation results were found to be co-aligned with the actual landslide that occurred in 2018. Simulations were carried out for natural and modified hill slope geometry in the study area. The volume of water in the hill slope, temporal and spatial evolution of pore water pressure, and factor of safety were analysed. Results indicated higher stability in natural hillslope (factor of safety of 1.243) compared to modified hill slope (factor of safety of 0.946) despite a higher pore water pressure in the natural hillslope. The study demonstrates the integrated applicability of the physics-based models in analyzing the stability of hill slopes under varying pore water pressure and hill slope geometry and its accuracy in predicting future landslides.


2022 ◽  
Vol 42 (1) ◽  
Author(s):  
Andreas Wittke ◽  
Nikolaus Gussone ◽  
Dominik Derigs ◽  
Barbara M. A. Teichert

AbstractFluid flow and carbonate recrystallization rates of deep-sea sediments from eight locations in the Equatorial Eastern Pacific were determined by using δ44/40Ca values of pore water and corresponding sediments. The studied drill sites of IODP Exp. 320/321 are located along a transect of decreasing crustal age and reveal different characteristic pore water depth profiles. The younger sites show an overall isotopic equilibration with the sediment in the upper part of the sedimentary column. In the lower part, the δ44/40Ca of the pore water increases back to seawater-like values at the sediment/basalt interface, forming a bulge-shaped pore water profile. The magnitude of the δ44/40Ca pore water bulge decreases with increasing age of the oceanic crust and sediment cover, resulting in seawater-like δ44/40Ca values throughout the sedimentary column in the oldest Sites U1331 and U1332. These findings indicate a seawater-like fluid input from the underlying crust into the sediment. Thus, after sedimentation, carbonate recrystallization processes start to enrich the pore water in 40Ca, and after a time of carbonate recrystallization and cooling of oceanic crust, a flow of seawater-like fluid starts to move upwards through the sedimentary column, enriching the pore water with 44Ca. We established a carbonate recrystallization and fluid flow model to quantify these processes. Our determined carbonate recrystallization rates between 0.000013e(−t/15.5) and 0.00038e(−t/100.5) and fluid flow rates in the range of 0.42–19 m*Myr−1 indicate that the fluid flow within the investigated sites of IODP Exp. 320/321 depends on the sedimentary composition and location of the specific site, especially the proximity to a recharge or discharge site of a hydrothermal convection cell.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 217
Author(s):  
Xiaomei Su ◽  
Alan D. Steinman ◽  
Yunlin Zhang ◽  
Hong Ling ◽  
Dan Wu

Sediment nutrients can be released to the surface water when hydraulic disturbance becomes strong in shallow lakes, which contributes to nutrient enrichment and subsequent lake eutrophication in the water column. To explore the seasonal variations and spatial distributions exhibited by nutrients in the water column, surface sediment, and pore water of Lake Yangcheng and its major tributaries, we determined the concentrations of nitrogen (N) and phosphorus (P) throughout the lake in different seasons of 2018. Total N (TN) and total P (TP) concentrations in the connected rivers were much greater than those in the lake, indicating that external loading greatly contributed to the nutrient enrichment. TN concentration in the water column was highest in the winter, whereas TP peaked in the summer. A similar temporal pattern was observed for TN and TP in the sediment with maxima in the winter and minima in the summer; however, nutrients in the pore water were highest in the summer, in contrast to the temporal variation in the sediment. Additionally, high TN values in the water column and high TP in the three compartments were distributed primarily in the west part of the lake, while high TN concentrations in the sediment and pore water were observed mainly in the east portion of the lake. According to the enrichment factor index (an indicator evaluating the nutrient enrichment by comparing the detected contents and standard values), nutrients in the lake sediment were severely enriched with TN and TP averaging 2195.8 mg/kg and 543.0 mg/kg, respectively. The vertical distribution of TN and TP generally exhibited similar decreasing patterns with an increase in sediment depth, suggesting mineralization of TN and TP by microbes and benthic organisms. More attention and research are needed to understand the seasonality of nutrient exchange across the sediment–water interface, especially in eutrophic lakes.


Author(s):  
Hoan Hoang Van ◽  
Flemming Larsen ◽  
Nhan Pham Quy ◽  
Long Tran Vu ◽  
Giang Nguyen Thị Thanh

In Nam Dinh province, in the Red River delta plain in Northern Vietnam, groundwater in the shallow Holocene aquifer shows elevated total dissolved solids up to 35 km from the coastline, indicating a saltwater intrusion from the Gulf of Tonkin. High groundwater salinities have been encountered below and adjacent to the Red River in the deep Pleistocene aquifer. Since 1996, large-scale groundwater abstraction was initiated from the deep aquifer, and the observed elevated salinities now raise concerns about whether the groundwater abstraction is undertaken sustainably. We have conducted a study to obtain a fundamental understanding of the recharge mechanisms and salinization processes in the Nam Dinh province. A holistic approach with multiple methods including transient electromagnetic sounding and borehole logging, exploratory drilling, sampling and analyzing primary ion and stable isotope compositions of water and pore water, groundwater head monitoring, hydraulic experiments laboratory of clay layers, and groundwater modeling by using the SEAWAT code. Results reveal that saline river water is leached from the Red River and its distributaries into the shallow aquifers. The distribution and occurrence of salty pore water in the Holocene aquitard clay shows that meteoric water has not been flowing through these low permeable clay layers. Marine pore water has, however, been leached out of the Pleistocene clay. When this layer is present, it offers protection of the lower aquifer against high salinity water from above. Salinity as high as 80 % of oceanic water is observed in interstitial pore water of the transgressive Holocene clay. Saltwater is transported into the Pleistocene aquifer, where the Holocene clay is directly overlying the aquifer.


2022 ◽  
Vol 28 (3) ◽  
pp. 241-252
Author(s):  
Sugeng Krisnanto

Abstract Two theoretical equations are developed to calculate the ratio of undrained shear strength to the vertical effective stress (the ratio of (su/sv’)) for normally consolidated saturated cohesive soils. The effective stress approach is used as the basis in the development of the theoretical equations. The theoretical equations are developed by relating the total and the effective stress paths. The development of the excess pore-water pressure is quantified using Skempton A and B pore-water pressure parameters. The theoretical equations are developed for two initial stress conditions: (i) an initially hydrostatic condition and (ii) an initially Ko (non-hydrostatic) condition. The performance of the theoretical equations of this study is compared with field and laboratory measurement data obtained from the literature. The close results between the theoretical equations and the measurements show that the theoretical equations of this study can compute the ratio of (su/sv’) well. Using the theoretical equations, the values of the ratio of (su/sv’) commonly used in engineering practice can be explained from the soil mechanics framework. Keywords: Saturated cohesive soils, c/p ratio, normally consolidated soil, undrained shear strength, effective shear strength, theoretical equation. Abstrak Dua persamaan teoritis dikembangkan untuk menghitung rasio kuat geser tak teralirkan dengan tegangan efektif vertikal (rasio (su/sv’)) untuk tanah kohesif jenuh terkonsolidasi normal. Pendekatan tegangan efektif dijadikan dasar dalam pengembangan kedua persamaan teoretis ini. Persamaan teoretis tersebut dikembangkan menghubungkan lintasan tegangan total dan lintasan tegangan efektif. Kenaikan tekanan air pori ekses dikuantifikasi menggunakan parameter tekanan air pori A dan B dari Skempton. Persamaan teoretis dikembangkan untuk dua kondisi tegangan awal: (i) tegangan awal hidrostatik dan (ii) teganan awal Ko (non hidrostatik). Kinerja kedua persamaan teoretis tersebut dibandingkan terhadap data pengukuran lapangan dan pengujian laboratorium yang diperoleh dari literatur. Persamaan teoretis dari studi ini memiliki kinerja yang baik dalam memperhitungan rasio (su/sv’) yang ditunjukkan dengan dekatnya hasil perhitungan menggunakan persamaan teoretis dan hasil pengukuran lapangan maupun pengujan laboratorium. Dengan persamaan teoretis tersebut, nilai rasio (su/sv’) yang biasa digunakan dalam rekayasa praktis bisa dijelaskan secara mekanika tanah. Kata-kata Kunci: Tanah kohesif jenuh, rasio c/p, tanah terkonsolidasi normal, kuat geser tak teralirkan, kuat geser efektif, persamaan teoretis.  


2022 ◽  
Vol 38 (1) ◽  
Author(s):  
Linya Chen ◽  
Hualing Zhai ◽  
Pandi Wang ◽  
Qibo Zhang ◽  
Shaohua Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document