scholarly journals Receiver function investigation of crustal structure in the Malawi and Luangwa rift zones and adjacent areas

2021 ◽  
Vol 89 ◽  
pp. 168-176
Author(s):  
Muchen Sun ◽  
Stephen S. Gao ◽  
Kelly H. Liu ◽  
Kevin Mickus ◽  
Xiaofei Fu ◽  
...  
1980 ◽  
Vol 70 (4) ◽  
pp. 1149-1159
Author(s):  
John J. Zucca ◽  
David P. Hill

abstract In November 1976, the U.S. Geological Survey, in conjunction with the Hawaii Institute of Geophysics, established a 100-km-long seismic refraction line normal to the southeast coast of Hawaii across the submarine flank of Kilauea Volcano. Interpretation of the data suggests that the oceanic crust dips about 2° toward the island underneath the volcanic pile. The unreversed Pn velocity is 7.9 km/ sec with crustal velocities varying strongly along the profile. Profiles across the rift zones of Kilauea suggest that the velocity in the rifts is higher than the velocity in the surrounding extrusive rocks and that the velocity in the southwest rift (∼6.5 km/sec) is lower than the velocity in the east rift (∼7.0 km/sec). The rift boundaries seem to dip away from the rift such that a large part of the volcanic pile is composed of the higher velocity core of riftzone rock.


Lithosphere ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 448-464
Author(s):  
Richard H. Groshong ◽  
Ryan Porter

Abstract The ability of models designed to use near-surface structural information to predict the deep geometry of a faulted block is tested for a thick-skinned thrust by matching the surface geometry to the crustal structure beneath the Wind River Range, Wyoming, USA. The Wind River Range is an ∼100-km-wide, thick-skinned rotated basement block bounded on one side by a high-angle reverse fault. The availability of a deep seismic-reflection profile and a detailed crustal impedance profile based on teleseismic receiver-function analysis makes this location ideal for testing techniques used to predict the deep fault geometry from shallow data. The techniques applied are the kinematic models for a circular-arc fault, oblique simple-shear fault, shear fault-bend fold, and model-independent excess area balancing. All the kinematic models imply that the deformation cannot be exclusively rigid-body rotation but rather require distributed deformation throughout some or all of the basement. Both the circular-arc model and the oblique-shear models give nearly the same best fit to the master fault geometry. The predicted lower detachment matches a potential crustal detachment zone at 31 km subsea. The thrust ramp is located close to where this zone dies out to the southwest. The circular-arc model implies that the penetrative deformation could be focused at the trailing edge of the basement block rather than being distributed uniformly throughout and thus helps to explain the line of second-order anticlines along the trailing edge of the Wind River block. Key points: (1) The circular-arc fault model and the oblique-shear model predict a lower detachment for the Wind River rotated block to be ∼31 km subsea, consistent with the crustal structure as defined by teleseismic receiver-function analysis. The thrust ramp starts where this zone dies out. (2) The kinematic models require distributed internal deformation within the basement block, probably concentrated at the trailing edge. (3) The uplift at the trailing edge of the rotated block is explained by the circular-arc kinematic model as a requirement to maintain area balance of a mostly rigid block above a horizontal detachment; the oblique-shear model can explain the uplift as caused by displacement on a dipping detachment.


2004 ◽  
Vol 159 (1) ◽  
pp. 146-164 ◽  
Author(s):  
Kwang-Hee Kim ◽  
Jer-Ming Chiu ◽  
Honn Kao ◽  
Qiyuan Liu ◽  
Yih-Hsiung Yeh

Sign in / Sign up

Export Citation Format

Share Document