Crustal Structure of the Northern Mississippi Embayment and a Comparison with other Continental Rift Zones

Author(s):  
W.D. MOONEY ◽  
M.C. ANDREWS ◽  
A. GINZBURG ◽  
D.A. PETERS ◽  
R.M. HAMILTON
1983 ◽  
Vol 94 (1-4) ◽  
pp. 327-348 ◽  
Author(s):  
W.D. Mooney ◽  
M.C. Andrews ◽  
A. Ginzburg ◽  
D.A. Peters ◽  
R.M. Hamilton

1980 ◽  
Vol 70 (4) ◽  
pp. 1149-1159
Author(s):  
John J. Zucca ◽  
David P. Hill

abstract In November 1976, the U.S. Geological Survey, in conjunction with the Hawaii Institute of Geophysics, established a 100-km-long seismic refraction line normal to the southeast coast of Hawaii across the submarine flank of Kilauea Volcano. Interpretation of the data suggests that the oceanic crust dips about 2° toward the island underneath the volcanic pile. The unreversed Pn velocity is 7.9 km/ sec with crustal velocities varying strongly along the profile. Profiles across the rift zones of Kilauea suggest that the velocity in the rifts is higher than the velocity in the surrounding extrusive rocks and that the velocity in the southwest rift (∼6.5 km/sec) is lower than the velocity in the east rift (∼7.0 km/sec). The rift boundaries seem to dip away from the rift such that a large part of the volcanic pile is composed of the higher velocity core of riftzone rock.


2021 ◽  
Vol 89 ◽  
pp. 168-176
Author(s):  
Muchen Sun ◽  
Stephen S. Gao ◽  
Kelly H. Liu ◽  
Kevin Mickus ◽  
Xiaofei Fu ◽  
...  

Tectonics ◽  
2017 ◽  
Vol 36 (12) ◽  
pp. 2806-2822 ◽  
Author(s):  
Isabel Hodgson ◽  
Finnigan Illsley-Kemp ◽  
Ryan J. Gallacher ◽  
Derek Keir ◽  
Cynthia J. Ebinger ◽  
...  

Geophysics ◽  
1975 ◽  
Vol 40 (1) ◽  
pp. 40-55 ◽  
Author(s):  
Robert H. Tatham

Seismic surface‐wave velocities are greatly affected by crustal structure. Because there is a strong contrast in the physical properties of clastic sediments and underlying basement materials, surface‐wave dispersion provides a fast, convenient, and inexpensive means of detecting sedimentary basins and estimating their thickness. Model calculations and published reports of explosion studies indicate that sedimentary thicknesses as shallow as 500 m (∼1650 ft) should be detectable by analysis of routinely recorded earthquake seismograms. This study demonstrates the use of seismic surface‐wave dispersion to detect sedimentary basins and to estimate their thickness. The technique is used first for the Mississippi embayment region of the U.S. Gulf Coast, where the crustal structure is known and the results can be verified, and then applied to offshore Greenland, where the crustal structure is unmapped but a sedimentary basin is suspected. The data used are available seismograms of natural earthquakes and, for the Gulf Coast area, an underground nuclear explosion. Because this technique requires only existing, readily available data and may be applied to many regions of the world, it offers an attractive reconnaissance tool in petroleum exploration. In the present study, surface‐wave dispersion and the effects of shallow crustal structure are reviewed in light of this application, and the advantages and limitations of the technique are explored.


1978 ◽  
Vol 45 (1) ◽  
pp. 15-22 ◽  
Author(s):  
N.N. Puzyrev ◽  
M.M. Mandelbaum ◽  
S.V. Krylov ◽  
B.P. Mishenkin ◽  
G.V. Petrik ◽  
...  

2017 ◽  
Vol 50 (2) ◽  
pp. 885
Author(s):  
N. Özgür ◽  
T. Arife Çalışkan

The active geothermal waters of Kızıldere, Bayındır, and Salihli in the continental rift zones of the Büyük Menderes, Küçük Menderes and Gediz represent typical examples in the study area. The meteoric waters in the drainage areas of the rift zones percolate at NE-SW and/or NW-SE trending fault zones and permeable clastic sediments into the reaction zone of the roof area of a magma chamber situated in a probable depth of up to 5 km where meteoric fluids are heated by the cooling magmatic melt and ascend to the surface due to their lower density caused by convection cells. The volatile components of CO2, SO2, HCl, H2S, HB, HF, and He out of the magma reach the geothermal water reservoir where an equilibrium between altered rocks, gas components, and fluids performs. Thus, the geothermal waters ascend in the tectonical zones of weakness at the continental rift zones of the Menderes Massif in terms of hot springs, gases, and steams. These fluids are characterized by high to medium CO2, H2S and NaCl contents.


Author(s):  
PS Badminov ◽  
D Ganchimeg ◽  
BI Pisarsky ◽  
D Oyuntsetseg ◽  
GI Orgilyanov ◽  
...  

Khangay neotectonic uplift is a large block of the earth’s crust confined to the area between two sublatitudinal deep faults (Bulnay and Goby-Altay). They are active faults accommodating main compression stresses in contract to the extension existed in the other area of the Khangay uplift. In contrast to continental rift zones of Khangay it is the region of compression. It is area with the increased values of the heat flux.DOI: http://dx.doi.org/10.5564/pmas.v0i4.48 Proceedings of the Mongolian Academy of Sciences 2009 No 4 pp.64-70


Sign in / Sign up

Export Citation Format

Share Document