scholarly journals The ideal membership problem and polynomial identity testing

2010 ◽  
Vol 208 (4) ◽  
pp. 351-363 ◽  
Author(s):  
V. Arvind ◽  
Partha Mukhopadhyay
2017 ◽  
Vol 24 (04) ◽  
pp. 563-576 ◽  
Author(s):  
P.S. Kolesnikov

We establish a universal approach to solutions of the word problem in the varieties of di- and tri-algebras. This approach, for example, allows us to apply Gröbner–Shirshov bases method for Lie algebras to solve the ideal membership problem in free Leibniz algebras (Lie di-algebras). As another application, we prove an analogue of the Poincaré–Birkhoff–Witt Theorem for universal enveloping associative tri-algebra of a Lie tri-algebra (CTD!-algebra).


2021 ◽  
Vol 17 (4) ◽  
pp. 1-29
Author(s):  
Monaldo Mastrolilli

Given an ideal I and a polynomial f the Ideal Membership Problem (IMP) is to test if f ϵ I . This problem is a fundamental algorithmic problem with important applications and notoriously intractable. We study the complexity of the IMP for combinatorial ideals that arise from constrained problems over the Boolean domain. As our main result, we identify the borderline of tractability. By using Gröbner bases techniques, we extend Schaefer’s dichotomy theorem [STOC, 1978] which classifies all Constraint Satisfaction Problems (CSPs) over the Boolean domain to be either in P or NP-hard. Moreover, our result implies necessary and sufficient conditions for the efficient computation of Theta Body Semi-Definite Programming (SDP) relaxations, identifying therefore the borderline of tractability for constraint language problems. This article is motivated by the pursuit of understanding the recently raised issue of bit complexity of Sum-of-Squares (SoS) proofs [O’Donnell, ITCS, 2017]. Raghavendra and Weitz [ICALP, 2017] show how the IMP tractability for combinatorial ideals implies bounded coefficients in SoS proofs.


2015 ◽  
Vol 07 (02) ◽  
pp. 1550019
Author(s):  
Jinyu Huang

A maximum linear matroid parity set is called a basic matroid parity set, if its size is the rank of the matroid. We show that determining the existence of a common base (basic matroid parity set) for linear matroid intersection (linear matroid parity) is in NC2, provided that there are polynomial number of common bases (basic matroid parity sets). For graphic matroids, we show that finding a common base for matroid intersection is in NC2, if the number of common bases is polynomial bounded. To our knowledge, these algorithms are the first deterministic NC algorithms for matroid intersection and matroid parity. We also give a new RNC2 algorithm that finds a common base for graphic matroid intersection. We prove that if there is a black-box NC algorithm for Polynomial Identity Testing (PIT), then there is an NC algorithm to determine the existence of a common base (basic matroid parity set) for linear matroid intersection (linear matroid parity).


Sign in / Sign up

Export Citation Format

Share Document