group isomorphism
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Venuste Nyagahakwa ◽  
Gratien Haguma

In this paper, we prove that each topological group isomorphism of the additive topological group $(\mathbb{R},+)$ of real numbers onto itself preserves the non-Lebesgue measurability of Vitali selectors of $\mathbb{R}$. Inspired by Kharazishvili's results, we further prove that each finite union of Vitali selectors related to different countable dense subgroups of $(\mathbb{R}, +)$, is not measurable in the Lebesgue sense. From here, we produce a semigroup of sets, for which elements are not measurable in the Lebesgue sense. We finally show that the produced semigroup is invariant under the action of the group of all affine transformations of $\mathbb{R}$ onto itself.


2020 ◽  
Vol 23 (3) ◽  
pp. 435-445
Author(s):  
Taro Sakurai

AbstractLet R be a finite unital commutative ring. We introduce a new class of finite groups, which we call hereditary groups over R. Our main result states that if G is a hereditary group over R, then a unital algebra isomorphism between group algebras {RG\cong RH} implies a group isomorphism {G\cong H} for every finite group H. As application, we study the modular isomorphism problem, which is the isomorphism problem for finite p-groups over {R=\mathbb{F}_{p}}, where {\mathbb{F}_{p}} is the field of p elements. We prove that a finite p-group G is a hereditary group over {\mathbb{F}_{p}} provided G is abelian, G is of class two and exponent p, or G is of class two and exponent four. These yield new proofs for the theorems by Deskins and Passi–Sehgal.


2018 ◽  
Vol 83 (3) ◽  
pp. 1190-1203 ◽  
Author(s):  
ALEXANDER S. KECHRIS ◽  
ANDRÉ NIES ◽  
KATRIN TENT

AbstractWe study the complexity of the topological isomorphism relation for various classes of closed subgroups of the group of permutations of the natural numbers. We use the setting of Borel reducibility between equivalence relations on Borel spaces. For profinite, locally compact, and Roelcke precompact groups, we show that the complexity is the same as the one of countable graph isomorphism. For oligomorphic groups, we merely establish this as an upper bound.


10.37236/5962 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Mikhail Muzychuk ◽  
Gábor Somlai

The Cayley Isomorphism property for combinatorial objects was introduced by L. Babai in 1977. Since then it has been intensively studied for binary relational structures: graphs, digraphs, colored graphs etc. In this paper we study this property for oriented Cayley maps. A Cayley map is a Cayley graph provided by a cyclic rotation of its connection set.  If the underlying graph is connected, then the map is an embedding of a Cayley graph into an oriented surface with the same cyclic rotation around every vertex.Two Cayley maps are called Cayley isomorphic if there exists a map isomorphism between them which is a group isomorphism too. We say that a finite group $H$ is a CIM-group if any two Cayley maps over $H$ are isomorphic if and only if they are Cayley isomorphic.The paper contains two main results regarding CIM-groups. The first one provides necessary conditons for being a CIM-group. It shows that a CIM-group should be one of the following$$\mathbb{Z}_m\times\mathbb{Z}_2^r, \\mathbb{Z}_m\times\mathbb{Z}_{4},\\mathbb{Z}_m\times\mathbb{Z}_{8}, \ \mathbb{Z}_m\times Q_8, \\mathbb{Z}_m\rtimes\mathbb{Z}_{2^e}, e=1,2,3,$$ where $m$ is an odd square-free number and $r$ a non-negative integer. Our second main result shows that the groups $\mathbb{Z}_m\times\mathbb{Z}_2^r$, $\mathbb{Z}_m\times\mathbb{Z}_{4}$, $\mathbb{Z}_m\times Q_8$ contained in the above list are indeed CIM-groups.


2017 ◽  
Vol 27 (08) ◽  
pp. 1073-1085 ◽  
Author(s):  
Ali Rejali ◽  
Meisam Soleimani Malekan

Giving a condition for the amenability of groups, Rosenblatt and Willis first introduced the concept of configuration. From the beginning of the theory, the question whether the concept of configuration equivalence coincides with the concept of group isomorphism was posed. We negatively answer this question by introducing two non-isomorphic, solvable and hence amenable groups which are configuration equivalent. Also, we will prove this conjecture, due to Rosenblatt and Willis, whether the configuration equivalent groups include the free non-Abelian group of the same rank or not. We show that two-sided equivalent groups have same class numbers.


Sign in / Sign up

Export Citation Format

Share Document