Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

Author(s):  
Mohammad M. Mansoor ◽  
Kok-Cheong Wong ◽  
Mansoor Siddique
2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Liang Gong ◽  
Krishna Kota ◽  
Wenquan Tao ◽  
Yogendra Joshi

Wavy channels were investigated in this paper as a passive scheme to improve the heat transfer performance of laminar fluid flow as applied to microchannel heat sinks. Parametric study of three-dimensional laminar fluid flow and heat transfer characteristics in microsized wavy channels was performed by varying the wavy feature amplitude, wavelength, and aspect ratio for different Reynolds numbers between 50 and 150. Two different types of wavy channels were considered and their thermal performance for a constant heat flux of 47 W/cm2 was compared. Based on the comparison with straight channels, it was found that wavy channels can provide improved overall thermal performance. In addition, it was observed that wavy channels with a configuration in which crests and troughs face each other alternately (serpentine channels) were found to show an edge in thermal performance over the configuration where crests and troughs directly face each other. The best configuration considered in this paper was found to provide an improvement of up to 55% in the overall performance compared to microchannels with straight walls and hence are attractive candidates for cooling of future high heat flux electronics.


Author(s):  
Liang Gong ◽  
Krishna Kota ◽  
Wenquan Tao ◽  
Yogendra Joshi

Wavy channels are investigated in this paper as a passive scheme to improve the heat transfer performance of laminar fluid flow as applied to microchannel heat sinks. Parametric study of three-dimensional laminar fluid flow and heat transfer characteristics in micro-sized wavy channels was performed by varying the wavy feature amplitude and wavelength at different Reynolds numbers between 50 and 150. Two different types of wavy channels were considered and their thermal performance for a constant heat flux of 47 W/cm2 was compared. Based on the comparison with straight channels, it was found that wavy channels can provide improved overall thermal performance. In addition, it was observed that wavy channels with a configuration in which crests and troughs face each other alternately (serpentine channels) were found to show an edge in thermal performance over the configuration where crests and troughs face each other. The best configuration considered in this paper was found to provide an improvement of up to 55% in the overall performance compared to microchannels with straight walls and hence are attractive candidates for cooling of future high heat flux electronics.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012058
Author(s):  
V V Kuznetsov ◽  
A S Shamirzaev ◽  
A S Mordovskoy

Abstract Heat transfer in active systems for high heat removal based on the micro-channels and hybrid micro-channel/micro-jet is considered. The application of these systems allows significantly increasing the critical heat flux for a dense arrangement of the heat stressed equipment. The characteristics of heat transfer and critical heat flux during subcooled flow boiling of water in the micro-channel heat sink and during micro-jet impingement in narrow channel are obtained. The experiments are performed for the horizontal segmented microchannels with a cross section of 340×2000 μm2 made on the top of copper target and for impingement micro-jet cooling of the copper target in the gap of 1000 μm. It has been found that, compared with impingement micro-jet cooling in similar condition, the micro-channel cooling is more effective for high heat flux removal although it creates the considerably high wall temperature.


Author(s):  
Ratan Kumar Chanda ◽  
Mohammad Sanjeed Hasan ◽  
Md. Mahmud Alam ◽  
Rabindra Nath Mondal

Sign in / Sign up

Export Citation Format

Share Document