The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials

Author(s):  
Hu Zhang ◽  
Wenzhen Fang ◽  
Zengyao Li ◽  
Wenquan Tao
Author(s):  
Deepak Shah ◽  
Alexey N. Volkov

A numerical method to solve thermal transport problems in powder bed systems and porous materials with finite thermal contact conductance at interfaces between individual powder particles or grains is developed based on the Smoothed Particle Hydrodynamics approach. The developed method is applied to study the effective thermal conductivity of two-dimensional random powder bed systems with binary distribution of powder particles radii. The effects of particle size distribution parameters, density parameter, and effective interface area between particles on the effective thermal conductivity are studied. It is found that at finite Biot number, which characterizes the ratio of the interfacial conductance to the conductance of the bulk powder material, the effective thermal conductivity of porous samples increases with increasing fraction of particles of larger size.


Author(s):  
C. Channy Wong

Different types of fillers with high electrical and thermal conductivities, e.g. graphite and alumina, have been added to adhesive polymers to create composite materials with improved mechanical and electrical properties. Previous modeling efforts have found that it is relatively difficult to predict the effective thermal conductivity of a composite polymeric material when incorporated with large volume content of fillers. We have performed comprehensive computational analysis that models the thermal contacts between fillers. This unique setup can capture the critical heat conduction path to obtain the effective thermal conductivity of the composite materials. Results of these predictions and its comparison with experimental data will be presented in this paper.


2018 ◽  
Vol 61 (12) ◽  
pp. 1959-1966 ◽  
Author(s):  
JianLi Wang ◽  
YaMei Song ◽  
YuFeng Zhang ◽  
YuHan Hu ◽  
Hang Yin ◽  
...  

2019 ◽  
Vol 43 (4) ◽  
pp. 277-300 ◽  
Author(s):  
Wouter Van De Walle ◽  
Hans Janssen

Cellular porous materials are frequently applied in the construction industry, both for structural and insulation purposes. The progressively stringent energy regulations mandate the development of better performing insulation materials. Recently, novel porous materials with nanopores or reduced gas pressures have been shown to possess even lower thermal conductivities because of the Knudsen effect inside their pores. Further understanding of the relation between the pore structure and the effective thermal conductivity is needed to quantify the potential improvement and design new optimized materials. This article presents the extension of a 3D numerical framework simulating the heat transfer at the pore scale. A novel methodology to model the reduced gas-phase conductivity in nanopores or at low gas pressures is presented, accounting for the 3D pore geometry while remaining computationally efficient. Validation with experimental and numerical results from the literature indicates the accuracy of the methodology over the full range of pore sizes and gas pressures. Combined with an analytical model to account for thermal radiation, the framework is applied to predict the thermal conductivity of a nanocellular poly(methyl methacrylate) foam experimentally characterized in the literature. The simulation results show excellent agreement with less than 5% difference with the experimental results, validating the model’s performance. Furthermore, results also indicate the potential improvements when decreasing the pore size from the micrometre to the nanometre range, mounting up to 40% reduction for such high-porosity low-matrix-conductivity materials. Future application of the model could assist the design of advanced materials, properly accounting for the effect of reduced pore sizes and gas pressures.


Sign in / Sign up

Export Citation Format

Share Document