fixed bed
Recently Published Documents


TOTAL DOCUMENTS

7521
(FIVE YEARS 1785)

H-INDEX

109
(FIVE YEARS 18)

2022 ◽  
Vol 238 ◽  
pp. 111876
Author(s):  
Jingyuan Zhang ◽  
Tian Li ◽  
Henrik Ström ◽  
Terese Løvås

2022 ◽  
Vol 177 ◽  
pp. 107370
Author(s):  
Pedro Hernández ◽  
Gonzalo Recio ◽  
Christian Canales ◽  
Alex Schwarz ◽  
Denys Villa-Gomez ◽  
...  

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Chu-Chin Hsieh ◽  
Jyong-Sian Tsai ◽  
Hwo-Shuenn Sheu ◽  
Jen-Ray Chang

V2O5/NaY-SiO2 adsorbents were prepared by soaking up vanadium oxalate precursors into pellet NaY-SiO2. The NaY-SiO2 supports were prepared from NaY-SiO2 dough followed by extrusion and calcination at 450 °C. Ethanol was used as a model adsorbate to test the performance of the adsorbents. The regeneration efficacy, defined as the ratio of the adsorption capacity of a regenerated adsorbent to that of the fresh adsorbent, was investigated through the dynamics of fixed-bed adsorption (breakthrough curve). TPO, DSC, and FT-IR were used to characterize carbonaceous species on the adsorbents; meanwhile, synchrotron XRPD, XAS, and the N2 isotherm were used to characterize the zeolite, vanadia structure, and surface area, respectively. The results indicated that in low temperature (300 °C) regeneration, adsorption sites covered by alkylated aromatic coke formed during regeneration, causing adsorbent deactivation. In contrast, during regeneration at a high temperature (450 °C), the deactivation was caused by the destruction of the NaY framework concomitant with channel blockage, as suggested by the BET surface area combined with Rietvelt XRPD refinement results. In addition, the appearance of V-O-V contribution in the EXAFS spectra indicated the aggregation of isolated VO4, which led to a decrease in the combustion rate of the carbonaceous species deposited on the adsorbents. For regeneration at 350 and 400 °C, only trace coke formation and minor structural destruction were observed. Long-term life tests indicated that regeneration at 400 °C presents a higher maintenance of stability.


Author(s):  
Mohammad Akbari Zadeh ◽  
Allahyar Daghbandan ◽  
Behrouz Abbasi Souraki

Abstract Background The presence of iron (Fe) and manganese (Mn) ions in rocky beds leads to groundwater pollution. Moreover, their excessive concentration causes bad taste and color stains of water. Methods Tea leaves-derived char (TLC), rice straw-derived char (RSC), and nanosilica (NS) were used to adsorb Fe and Mn ions from water sources. The effects of parameters such as contact time, composition percentage, and particle size of biosorbents in a fixed-bed adsorption column were investigated. Results The study on the adsorption of Fe and Mn ions showed that the amount of adsorption increased significantly by decreasing the particle size. Furthermore, the combination of nano-biosorbents with nanosilica improved the adsorption. The Thomas and Adams–Bohart models adequately indicated the adsorption of Fe and Mn ions onto nano-biosorbents in the column mode. The TLC and RSC with NS are applicable for the removal of Fe and Mn ions from groundwater. Conclusions According to the BET analysis results, with more crushing of biosorbents by ball mill and placing them in the furnace, specific surface area of tea leaves and rice straw increased from 0.29 to 3.45 and from 3.70 to 10.99 m2/g, respectively. The absorption of iron and manganese from the aqueous solution increased with the percentage of nano-silica. According to breakthrough curves, under best conditions (the seventh mode), nano-biosorbents could remove 98.05% and 97.92% of iron and manganese ions, respectively. The maximum equilibrium capacity of the adsorption column (mg/g) was 256.56 for iron and 244.79 for manganese. Graphical abstract


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 80
Author(s):  
Celia Alvarez-Gonzalez ◽  
Victoria E. Santos ◽  
Miguel Ladero ◽  
Juan M. Bolivar

Cellulose saccharification to glucose is an operation of paramount importance in the bioenergy sector and the chemical and food industries, while glucose is a critical platform chemical in the integrated biorefinery. Among the cellulose degrading enzymes, β-glucosidases are responsible for cellobiose hydrolysis, the final step in cellulose saccharification, which is usually the critical bottleneck for the whole cellulose saccharification process. The design of very active and stable β-glucosidase-based biocatalysts is a key strategy to implement an efficient saccharification process. Enzyme immobilization and reaction engineering are two fundamental tools for its understanding and implementation. Here, we have designed an immobilized-stabilized solid-supported β−glucosidase based on the glyoxyl immobilization chemistry applied in porous solid particles. The biocatalyst was stable at operational temperature and highly active, which allowed us to implement 25 °C as working temperature with a catalyst productivity of 109 mmol/min/gsupport. Cellobiose degradation was implemented in discontinuous stirred tank reactors, following which a simplified kinetic model was applied to assess the process limitations due to substrate and product inhibition. Finally, the reactive process was driven in a continuous flow fixed-bed reactor, achieving reaction intensification under mild operation conditions, reaching full cellobiose conversion of 34 g/L in a reaction time span of 20 min.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Zhenmin Cheng ◽  
Gang Luo ◽  
Yanling Tang ◽  
Dan Ling ◽  
Zhaoxuan Chen ◽  
...  

Films and rivulets are the two basic forms of dynamic liquid in a three-phase fixed bed (trickle bed), which determines the wetting efficiency of the catalyst. This paper is devoted to the conflicting wetting performance observed between non-porous glass beads and porous alumina pellets, and a parallel zone model is applied to resolve the complex liquid flow texture. This shows that in the case of glass beads, the wetting efficiencies of the catalyst along with the liquid flow rate in increasing and decreasing branches are different, especially when the gas flow rate is low. In comparison, there is almost no wetting difference for the alumina pellets with respect to liquid flow rate increasing or decreasing. The dynamic liquid is significantly more uniformly distributed over the cross-section in the Al2O3 bed than in the glass one.


Author(s):  
Hadi Ramin ◽  
Easwaran N Krishnan ◽  
Gurubalan Annadurai ◽  
Carey J. Simonson

Abstract Fixed-bed regenerator is a type of air-to-air energy exchanger and recently introduced for energy recovery application in HVAC systems because of their high heat transfer effectiveness. Testing of FBRs is essential for performance evaluation and product development. ASHRAE and CSA recently included guidelines for testing of FBRs in their respective test standards. The experiments on FBRs are challenging as they never attain a steady state condition, rather undergoes a quasi-steady state operation. Before reaching the quasi-steady state, FBRs undergo several transient cycles. Hence, the test standards recommend getting measurements after one hour of operation, assuming FBR attains the quasi-steady state regardless of test conditions. However, the exact duration of the initial transient cycles is unknown and not yet studied so far. Hence, in this paper, the duration of FBR's transient operation is investigated for a wide range of design and operating conditions. The test standards' recommendation for the transient duration is also verified. The major contributions of this paper are (i) quantifying the effect of design parameters (NTUo and Cr*) on the duration of transient operation and (ii) investigation of the effect of sensor time constant on the transient temperature measurements. The results will be useful to predict and understand the transient behavior of FBRs accurately.


Sign in / Sign up

Export Citation Format

Share Document