scholarly journals Deep learning based detection and localization of road accidents from traffic surveillance videos

ICT Express ◽  
2021 ◽  
Author(s):  
Karishma Pawar ◽  
Vahida Attar
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3813
Author(s):  
Athanasios Anagnostis ◽  
Aristotelis C. Tagarakis ◽  
Dimitrios Kateris ◽  
Vasileios Moysiadis ◽  
Claus Grøn Sørensen ◽  
...  

This study aimed to propose an approach for orchard trees segmentation using aerial images based on a deep learning convolutional neural network variant, namely the U-net network. The purpose was the automated detection and localization of the canopy of orchard trees under various conditions (i.e., different seasons, different tree ages, different levels of weed coverage). The implemented dataset was composed of images from three different walnut orchards. The achieved variability of the dataset resulted in obtaining images that fell under seven different use cases. The best-trained model achieved 91%, 90%, and 87% accuracy for training, validation, and testing, respectively. The trained model was also tested on never-before-seen orthomosaic images or orchards based on two methods (oversampling and undersampling) in order to tackle issues with out-of-the-field boundary transparent pixels from the image. Even though the training dataset did not contain orthomosaic images, it achieved performance levels that reached up to 99%, demonstrating the robustness of the proposed approach.


Author(s):  
Sha Luo ◽  
Huimin Lu ◽  
Junhao Xiao ◽  
Qinghua Yu ◽  
Zhiqiang Zheng

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4524
Author(s):  
Leticia Oyuki Rojas-Perez ◽  
Jose Martinez-Carranza

Autonomous Drone Racing (ADR) was first proposed in IROS 2016. It called for the development of an autonomous drone capable of beating a human in a drone race. After almost five years, several teams have proposed different solutions with a common pipeline: gate detection; drone localization; and stable flight control. Recently, Deep Learning (DL) has been used for gate detection and localization of the drone regarding the gate. However, recent competitions such as the Game of Drones, held at NeurIPS 2019, called for solutions where DL played a more significant role. Motivated by the latter, in this work, we propose a CNN approach called DeepPilot that takes camera images as input and predicts flight commands as output. These flight commands represent: the angular position of the drone’s body frame in the roll and pitch angles, thus producing translation motion in those angles; rotational speed in the yaw angle; and vertical speed referred as altitude h. Values for these 4 flight commands, predicted by DeepPilot, are passed to the drone’s inner controller, thus enabling the drone to navigate autonomously through the gates in the racetrack. For this, we assume that the next gate becomes visible immediately after the current gate has been crossed. We present evaluations in simulated racetrack environments where DeepPilot is run several times successfully to prove repeatability. In average, DeepPilot runs at 25 frames per second (fps). We also present a thorough evaluation of what we called a temporal approach, which consists of creating a mosaic image, with consecutive camera frames, that is passed as input to the DeepPilot. We argue that this helps to learn the drone’s motion trend regarding the gate, thus acting as a local memory that leverages the prediction of the flight commands. Our results indicate that this purely DL-based artificial pilot is feasible to be used for the ADR challenge.


Sign in / Sign up

Export Citation Format

Share Document