scholarly journals After-sales maintenance service strategies optimization. An offshore wind farm case study

2016 ◽  
Vol 49 (28) ◽  
pp. 156-161 ◽  
Author(s):  
Irene Sagarna ◽  
Jone Uribetxebarria ◽  
Eduardo Castellano ◽  
Asier Erguido
2019 ◽  
Vol 9 (3) ◽  
pp. 431 ◽  
Author(s):  
Nikolaos Simisiroglou ◽  
Heracles Polatidis ◽  
Stefan Ivanell

The aim of the present study is to perform a comparative analysis of two actuator disc methods (ACD) and two analytical wake models for wind farm power production assessment. To do so, wind turbine power production data from the Lillgrund offshore wind farm in Sweden is used. The measured power production for individual wind turbines is compared with results from simulations, done in the WindSim software, using two ACD methods (ACD (2008) and ACD (2016)) and two analytical wake models widely used within the wind industry (Jensen and Larsen wake models). It was found that the ACD (2016) method and the Larsen model outperform the other method and model in most cases. Furthermore, results from the ACD (2016) method show a clear improvement in the estimated power production in comparison to the ACD (2008) method. The Jensen method seems to overestimate the power deficit for all cases. The ACD (2016) method, despite its simplicity, can capture the power production within the given error margin although it tends to underestimate the power deficit.


2015 ◽  
Author(s):  
EVANGELOS PAPATHEOU ◽  
NIKOLAOS DERVILIS ◽  
EOGHAN MAGUIRE ◽  
IFIGENEIA ANTONIADOU ◽  
KEITH WORDEN

2019 ◽  
Vol 186 ◽  
pp. 232-244 ◽  
Author(s):  
Qiang Feng ◽  
Xiujie Zhao ◽  
Dongming Fan ◽  
Baoping Cai ◽  
Yiqi Liu ◽  
...  

2021 ◽  
Author(s):  
Morteza Bahadori ◽  
Hassan Ghassemi

Abstract In recent years, as more offshore wind farms have been constructed, the possibility of integrating various offshore renewable technologies is increased. Using offshore wind and solar power resources as a hybrid system provides several advantages including optimized marine space utilization, reduced maintenance and operation costs, and relieving wind variability on output power. In this research, both offshore wind and solar resources are analyzed based on accurate data through a case study in Shark Bay (Australia), where bathymetric information confirms using offshore bottom-fixed wind turbine regarding the depth of water. Also, the power production of the hybrid system of co-located bottom-fixed wind turbine and floating photovoltaic are investigated with the technical characteristics of commercial mono-pile wind turbine and photovoltaic panels. Despite the offshore wind, the solar energy output has negligible variation across the case study area, therefore using the solar platform in deep water is not an efficient option. It is demonstrated that the floating solar has a power production rate nearly six times more than a typical offshore wind farm with the same occupied area. Also, output energy and surface power density of the hybrid offshore windsolar system are improved significantly compared to a standalone offshore wind farm. The benefits of offshore wind and solar synergies augment the efficiency of current offshore wind farms throughout the world.


Sign in / Sign up

Export Citation Format

Share Document