Comparative efficacy testing — Fractional flow reserve by coronary computed tomography for the evaluation of patients with stable chest pain

2015 ◽  
Vol 183 ◽  
pp. 173-177 ◽  
Author(s):  
Ronak Rajani ◽  
Jessica Webb ◽  
Anna Marciniak ◽  
Rebecca Preston
2021 ◽  
Vol 1 (11) ◽  
Author(s):  
Yi-Sheng Chao ◽  
Jennifer Horton

Computed tomography-derived fractional flow reserve (CT-FFR) may predict coronary artery disease or flow-limiting stenosis in adult patients with stable chest pain better than coronary CT angiography alone, based on the relevant studies in 2 systematic reviews. CT-FFR is associated with a decreased need for invasive coronary angiography and revascularization in adult patients with stable chest pain, based on findings from 1 systematic review. In the US settings, CT-FFR was dominant (i.e., less costly and more effective) compared to stress testing for the evaluation of low-risk stable chest pain, based on findings from 1 cost-effectiveness study.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K T Madsen ◽  
K T Veien ◽  
B L Noergaard ◽  
P Larsen ◽  
L Deibjerg ◽  
...  

Abstract Introduction Coronary CT angiography (CTA) derived fractional flow reserve (FFRct) is increasingly used for guiding referral to invasive procedures in patients with stable chest pain. However, optimal interpretation of FFRct-analysis in terms of location and threshold of applied FFRct-values is unclear. Purpose To evaluate the clinical performance of various vessel-specific physiological FFRct derived measures of ischemia for prediction of standard of care guided coronary revascularization in patients with stable chest pain and coronary artery disease as determined by coronary CTA. Methods Retrospective study in patients with stable chest pain referred for coronary angiography based on coronary CTA. Standard acquired coronary CTA data sets were transmitted for core-laboratory analysis at HeartFlow. Any FFRct value in the major coronary arteries ≥1.8 mm in diameter, including side branches, were registered. Lesions were categorized as positive for ischemia using 6 different algorithms: Lowest in vessel FFRct-value (1) ≤0.75 or (2) ≤0.80; 2 cm distal-to-lesion FFRct-value (3) ≤0.75 or (4) ≤0.80; ΔFFRct (5) ≥0.06 or a combination of 2 and 5. The personnel responsible for downstream patient management had no information regarding FFRct test results. Results A total of 172 patients were included. Revascularization was performed in 62 (35%) patients. The diagnostic performance of different FFRct algorithms for predicting standard of care guided coronary revascularization is shown in the Table. Revascularization Predictions by FFRct N=172 Diagnostic performance FFRCT false negative FFRCT false positive Values given as (%) No. of revasc vessels No. of abnormal vessels FFRCT Algorithm Sens Spec PPV NPV Acc 1 2 3 1 2 3 Distal FFRCT ≤0.75 77 68 58 84 72 12 2 0 29 5 1 Distal FFRCT ≤0.80 92 43 48 90 61 5 0 0 40 20 3 Lesion-specific FFRCT ≤0.75 68 86 74 83 80 17 3 0 12 3 0 Lesion-specific FFRCT ≤0.80 82 78 68 89 80 10 2 0 21 3 1 ΔFFRCT ≥0.06 98 36 47 98 59 1 0 0 51 19 0 Combinationa 92 54 53 92 67 5 0 0 39 12 0 aDistal FFRCT ≤0.80 and ΔFFRCT ≥0.06. Sens = sensitivity; Spec = specificity; PPV = positive predictive value; NPV = negative predictive value; Acc = accuracy; FFRCT = fractional flow reserve derived from coronary CTA; ΔFFRCT = difference between FFRCT-value immediately proximal and distal to lesion; Revasc = revascularized. Conclusion The diagnostic performance of FFRct in terms of predicting standard of care guided coronary revascularization is dependent on the applied algorithm for interpretation of the FFRct-analysis.


Sign in / Sign up

Export Citation Format

Share Document