Power management for hybrid AC/DC microgrid with multi-mode subgrid based on incremental costs

Author(s):  
Fan Yang ◽  
Lingyue Ye ◽  
S.M. Muyeen ◽  
Dongdong Li ◽  
Shunfu Lin ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Sara J. Ríos ◽  
Daniel J. Pagano ◽  
Kevin E. Lucas

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-mode-control in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.


Author(s):  
João Pedro Carvalho Silveira ◽  
Pedro José dos Santos Neto ◽  
Tárcio Andre dos Santos Barros ◽  
Ernesto Ruppert Filho

Author(s):  
Wenshuai Bai ◽  
Hongwei Wu ◽  
Manuela Sechilariu ◽  
Fabrice Locment

Sign in / Sign up

Export Citation Format

Share Document