Mode I stress intensity factors for edge cracks emanating from 2-D U-notches using composition of SIF weight functions

2006 ◽  
Vol 28 (4) ◽  
pp. 355-365 ◽  
Author(s):  
L TEH ◽  
A LOVE ◽  
F BRENNAN
1999 ◽  
Vol 121 (2) ◽  
pp. 181-187 ◽  
Author(s):  
C.-C. Ma ◽  
I-K. Shen

In this study, mode I stress intensity factors for a three-dimensional finite cracked body with arbitrary shape and subjected to arbitrary loading is presented by using the boundary weight function method. The weight function is a universal function for a given cracked body and can be obtained from any arbitrary loading system. A numerical finite element method for the determination of weight function relevant to cracked bodies with finite dimensions is used. Explicit boundary weight functions are successfully demonstrated by using the least-squares fitting procedure for elliptical quarter-corner crack and embedded elliptical crack in parallelepipedic finite bodies. If the stress distribution of a cut-out parallelepipedic cracked body from any arbitrary shape of cracked body subjected to arbitrary loading is determined, the mode I stress intensity factors for the cracked body can be obtained from the predetermined boundary weight functions by a simple surface integration. Comparison of the calculated results with some available solutions in the published literature confirms the efficiency and accuracy of the proposed boundary weight function method.


2014 ◽  
Vol 663 ◽  
pp. 98-102 ◽  
Author(s):  
Al Emran Ismail

This paper presents the effect of eccentric cracks on the behavior of stress intensity factors (SIF) of single edge crack in bi-material plates. According to literature, it is found that most of the research conducted previously more on central single edge crack and it is well understood. However, not many research conducted on the eccentric stress intensity factor of single edge crack in bi-material plates. In order to evaluate the SIFs of eccentric edge cracks, ANSYS finite element software is used to model plain strain single edge crack in a plate subjected mode I loadings. The present SIFs are then validated with the existing central crack and it is well agreed to each others. According to the present results, it is found that mode I SIFs decreased insignificantly and mode II SIFs decreased asymptotically when the crack situated away from the central line. As expected all types of SIFs increased when crack length is increased.


1986 ◽  
Vol 108 (2) ◽  
pp. 403-413 ◽  
Author(s):  
George T. Sha ◽  
Chien-Tung Yang

Explicit nodal weight functions for both bore and rim radial cracks in a hollow disk are presented with special emphasis on the load independent characteristics of the weight functions that can eliminate the repeated finite element computations of the Mode I stress intensity factors (KI) for a given crack geometry under different loading conditions. An analytical expression, which relates the explicit crack-face weight functions to the radial distance (rs) from the crack tip along the crack face, is also provided for wide range ratios of crack length (a) to the difference between outer disk radius (Ro) and inner disk radius (Ri) [0.01 ≤ a/(Ro − Ri) ≤ 0.8]. The accurate explicit weight functions of any crack length can be obtained easily with a cubic spline interpolation technique from an adequate set of explicit crack-face weight functions of discrete crack lengths. With the availability of the explicit crack-face weight functions for both the bore and rim cracks, the Mode I stress intensity factors under any complex loading conditions can be calculated accurately and inexpensively by a sum of worklike products between the equivalent “un-cracked” stress field and the interpolated crack-face weight functions. This equivalent uncracked stress field could include the body force loading of a rotating disk, thermal loading, complex residual stresses, the applied tractions at the crack face and other locations, and any combinations of these loading conditions.


2011 ◽  
Vol 241 (9) ◽  
pp. 3613-3623 ◽  
Author(s):  
Zhen-huan Zhou ◽  
Xin-sheng Xu ◽  
Andrew Yee-tak Leung ◽  
Zhen-qun Guan

Sign in / Sign up

Export Citation Format

Share Document