plain strain
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Panpan Guo ◽  
Gang Lei ◽  
Lina Luo ◽  
Xiaonan Gong ◽  
Yixian Wang ◽  
...  

This paper describes recent advances in the effect of soil creep on the time-dependent deformation of deep braced excavation. The effect of soil creep is generally investigated using the observational method and the plain-strain numerical simulation method. The observational method is more applicable for deep braced excavations in soft clays constructed using the top-down method. The plain-strain numerical simulation method can be conveniently used for parametric analysis, but it is unable to capture the spatial characteristics of soil creep effect on lateral wall deflections and ground movements. The additional lateral wall deflections and ground movements that are generated due to the soil creep effect can account for as large as 30% of the total displacements, which highlights the importance of considering the effect of soil creep in deep braced excavations through soft clays. The magnitude of the displacements due to soil creep depends on various factors, such as excavation depth, elapsed period, unsupported length, and strut stiffness. Parametric analyses have indicated several effective measures that can be taken in practice to mitigate the detrimental effect of soil creep on the deformation of deep braced excavation. Based on the literature review, potential directions of the related future research work are discussed. This paper should be beneficial for both researchers and engineers focusing on mitigating the adverse effect of soil creep on the stability of deep braced excavations.


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 158
Author(s):  
Wirman Hidayat

Lateral supports, including walls and bracing systems on deep excavation, are generally required to prevent excessive horizontal wall movement and ground surface settlement which can cause damage to the excavation construction itself and adjacent structures. These criteria are influenced by the stiffness of the excavation system, including the spacing of vertical and horizontal supports (struts). This paper presents the parametric study using the variation of struts spacing in the vertical and horizontal direction to analyze the influence on horizontal wall movement and ground surface settlement. The analysis was carried out using finite element software, PLAXIS performed in 2D plain strain and 3D. This study shows that struts spacing in the horizontal and vertical direction is equally important and equally significant on the deformation that occurs with a maximum difference of about 0.06%. The maximum horizontal wall movement ratio computed by 3D analysis to the 2D analysis is defined as plain strain ratio (PSR). The PSR value decreases when the system stiffness is decreased. Meanwhile, when the system stiffness was higher, the PSR value will be higher and closer to 1, showing that the difference in the 3D and 2D models is relatively small.


2021 ◽  
Vol 6 ◽  
pp. 143-157
Author(s):  
Santosh Niraula ◽  
Indra Prasad Acharya

To accommodate the shear requirement and settlement requirement of high rise construction, the concept of piled-raft foundation has been developed. This research deals with successive analysis of parameters of piled-raft foundation system using PLAXIS-2D as a FEM tool. Plain strain analysis of piled raft foundation system has been conducted out by successive fixing up of parameters. For the analysis two cases has been studied for piled-raft lying on silty soil deposit and on clayey deposit with respect to uniform static loading from superstructure. The result of successive variation of parameters showed that variation has limiting effect on stress and displacement behavior. The analysis is also performed for raft of different relative stiffness and pile of different relative compressibility and load sharing between plain strain pile and raft has been analyzed.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 865
Author(s):  
Evgenii Aryshenskii ◽  
Jurgen Hirsch ◽  
Sergey Konovalov ◽  
Vladimir Aryshenskii ◽  
Alexander Drits

The study addresses the effect of magnesium and other alloying elements on rolling “β-fiber” texture formation during hot deformation of aluminum alloys. For the study, flat cast ingots from three aluminum alloys with variable magnesium content were deformed in a Gleeble testing unit with different parameters of thermomechanical treatment. Immediately after completion of deformation, the samples were quenched using an automatic cooling system and the microstructure and crystalline texture was analyzed by optical microscopy and X-ray analysis. The analysis demonstrated that an increase in alloying components, magnesium in particular, leads to an increase in brass-type texture and a decrease in S and copper-type texture. The reason was that the simulation of the deformation texture development revealed a great contribution of impurity atoms rather than the decrease in stacking fault energy.


Author(s):  
Parisa Torabi ◽  
Mohammad Javad Abghary ◽  
Seyed Mansour Bidoki ◽  
Emad Owlia

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 638
Author(s):  
Nowfal Al-Hamdany ◽  
Mohammed Zakria Salih ◽  
Heinz Palkowski ◽  
Adele Carradò ◽  
Weimin Gan ◽  
...  

Anisotropic behavior is a key characteristic for understanding eccentricity in tubes. In this paper, the effect of using a tilted die during tube drawing on eccentricity, texture, dislocation density, and mechanical properties is shown. Copper tubes were drawn with a ±5° tilted die for two passes. The increase or decrease in eccentricity can be controlled by controlling the angle of the tilted die. Two types of textures have been developed during tube drawing, namely plane strain and uniaxial types. Plain strain type texture is mainly characterized by the β fiber with a dominant copper component {112}<111>. The uniaxial deformation type is dominated by the <111> fiber, as commonly found by wire drawing. Texture sharpness increases with increasing drawing strain, and the texture varies significantly between the maximum and minimum wall thickness. This texture variation between maximum and minimum wall thickness has no significant influence on mechanical properties, which are more or less similar, but the increase in strength after each drawing pass is apparent. The dislocation density is low for the as-received tubes due to recovery and recrystallization. This is consistent with the as-received texture dominated by the cube component {001}<100>. During tube drawing, dislocation density increases as a function of the deformation strain. The variation of dislocation density between the maximum and minimum wall thickness in the tube deformed with −5° tilted die is higher than the variation in the tube deformed with +5° tilted die.


Author(s):  
Viktor Matviychuk ◽  
Mykola Kolisnyk

The article presents the results of the development and research of the combined technological process of forming the outer and inner flanges of the lids of fractional and distillation columns on sheet blanks by the method of stamping by rolling and rotary drawing. For this purpose, equipment has been developed that allows to form both outer and inner flanges of the blank in one run of the conical roll. Studies have shown that technological capabilities of the process are limited by the risk of destruction of the top layers of the outer flange bending center and its corrugation, as well as by the neck formation or destruction of the peripheral areas of the inner flange. To assess the deformability of the outer flange, the stress-strain state of its bending center was investigated. According to the set stress values, the stress state of the material is determined, the maximum value of which on the surface of the bending zone is Formula for determining the minimum radius of the mandrel, which when using the values of the critical ductility of the material allows to prevent destruction. As well, an expression for determining the maximum width of the flange, provided that the destruction of peripheral areas is prevented, is obtained. As corrugations formation is the main danger in forming the external flanges by the stamping by rolling method (SR), the expression for determining the maximum width of the flange under the condition of a stable process is obtained. If it is necessary to get more developed flanges, it is proposed to provide thinning of their walls by rotary extraction at the second stage. When forming the inner flanges of the blank stacks radial compressive stresses and tangential tensile stresses in the material are brought about. The action of tangential stresses causes loss of stability of the flange by way of neck formation. The value of the critical strains increases with the approach to the state of plain-strain deformation. Therefore, it is recommended to develop process parameters based on construction of the critical strains diagrams.


All Earth ◽  
2021 ◽  
Vol 33 (1) ◽  
pp. 88-97
Author(s):  
Yuzhou Hou ◽  
Yang Zhou ◽  
Boyi Zhao ◽  
Guowei Li

Sign in / Sign up

Export Citation Format

Share Document