Plastic dissipation energy at a bimaterial crack tip under cyclic loading

2010 ◽  
Vol 32 (10) ◽  
pp. 1710-1723 ◽  
Author(s):  
Jeremy S. Daily ◽  
Nathan W. Klingbeil
Author(s):  
K. Linga Murty ◽  
Chang-Sung Seok

Ferritic steels commonly used for pressure vessels and reactor supports in light water reactors (LWRs) exhibit dynamic strain aging (DSA) resulting in decreased ductility and toughness. In addition, recent work indicated decreased toughness during reverse-cyclic loading that has implications on reliability of these structures under seismic loading conditions. We summarize some of our recent work on these aspects along with synergistic effects, of interstitial impurity atoms (IIAs) and radiation induced point defects, that result in interesting beneficial effects of radiation exposure at appropriate temperature and strain-rate conditions. Radiation-defect interactions were investigated on pure iron, Si-killed mild steel, A533B, A516, A588 and other reactor support and vessel steels. In all cases, DSA is seen to result in decreased ductility accompanied by increased work-hardening parameter. In addition to mechanical property tests, fracture toughness is investigated on both A533B and A516 steels. While dips in fracture toughness are observed in A533B steel in the DSA region, A516 steel exhibited at best a plateau. The reasons could lie in the applied strain-rates; while J1c tests were performed on A533B steel using 3-point bend tests on Charpy type specimens, CT specimens were used for A516 steel. However, tensile and 3-point bend tests on similar grade A516 steel of different vintage did exhibit distinct drop in the energy to fracture. Load-displacement curves during J1c tests on CT specimens did show load drops in the DSA regime. The effect of load ratio (R) on J versus load-line displacement curves for A516 steel is investigated from +1 to −1 at a fixed normalized incremental plastic displacement of 0.1 (R = 1 corresponds to monotonic loading). We note that J-values are significantly reduced with decreasing load ratio. The work-hardening characteristics on the fracture surfaces were studied following monotonic and cyclic loading fracture tests along with the stress-field analyses. From the hardness and the ball-indentation tests, it was shown that decreased load ratio (R) leads to more strain hardening at the crack tip resulting in decreased fracture toughness. From the stress field analysis near the crack tip of a compact tension fracture toughness test specimen, a cycle of tensile and compressive loads is seen to result in tensile residual stresses (which did not exist at the crack tip before). These results are important to evaluations of flawed-structures under seismic loading conditions, i.e. Leak-Before-Break (LBB) and in-service flaw evaluation criteria where seismic loading is addressed. In addition, studies on fast vs total (thermal+fast) neutron spectra revealed unexpected results due to the influence of radiation exposure on source hardening component of the yield stress; grain-size of pure iron plays a significant role in these effects.


2011 ◽  
Vol 20 (5) ◽  
pp. 096369351102000 ◽  
Author(s):  
Andrzej Katunin

The present study is focused on the analytical modelling of the stationary self-heating caused by the hysteretic behaviour of the polymeric laminated circular and annular plates hinged on the boundary under axisymmetric transverse cyclic loading. The investigation was based on the complex parameters concept. The coupled thermoviscoelasticity problem was solved by substitution of the dissipation energy function to the heat transfer equation as a source function. The self-heating temperature distributions formulas were obtained by solving the heat transfer equation with appropriate thermal boundary conditions using trigonometric Fourier series. Numerous parametric analyses were presented. It was shown, that omitting the influence of the self-heating effect may results in the incorrect description of the behaviour of polymeric composites under cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document