Crack Tip Growth Rate Model for Cyclic Loading

Author(s):  
F. Ellyin ◽  
C. O. A. Fakinlede
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


2012 ◽  
Vol 730-732 ◽  
pp. 883-888 ◽  
Author(s):  
Daniel J. Moutinho ◽  
Laércio G. Gomes ◽  
Otávio L. Rocha ◽  
Ivaldo L. Ferreira ◽  
Amauri Garcia

Solidification of ternary Al-Cu-Si alloys begins with the development of a complex dendritic network typified by primary (λ1) and secondary (λ2) dendrite arm spacings which depend on the chemical composition of the alloy and on the casting thermal parameters such as the growth rate and the cooling rate. These thermal parameters control the scale of dendritic arms, the size and distribution of porosity and intermetallic particles in the casting. In this paper, λ1and λ2were correlated with experimental thermal parameters i.e., the tip growth rate and the tip cooling rate. The porosity profile along the casting length has also been experimentally determined. The volumetric fraction of pores increase with the increase in alloying Si and with the increase in Fe concentration at the regions close to the casting cooled surface.


2009 ◽  
Vol 417-418 ◽  
pp. 313-316 ◽  
Author(s):  
Hyun Kyu Jun ◽  
Won Hee You

Rolling contact fatigue initiated defects such as surface corrugation, head check, squat, are one of growing problems in high speed railway line. A squat is generally developed below the rail surface and grows parallel to surface until it turns down into rail. Estimation of critical crack size and crack growth rate is an essential to prevent rail from failure and develop cost effective railway maintenance strategy. In this study, we predict crack growth rate of a rail with a squat defect. For this purpose, a rail model with a squat defect is developed. Timoshenko’s beam theory is applied to calculate the global bending stress at the crack tip and Hertzian contact model is applied to calculate the local contact stresses at the surface of rail by simulating rolling over a railway wheel on a rail. Stress intensity factors are calculated from the total stress at the crack tip. Fatigue crack growth curve of 60kg rail steel is applied to calculated crack growth rate. Software to predict crack growth life through whole life cycle is developed. We expect that we can make a more cost effective rail maintenance strategy by considering the crack growth analysis for a defective rail.


2018 ◽  
Vol 165 ◽  
pp. 13013
Author(s):  
Wei Zhang ◽  
Liang Cai

In this paper, the in-situ scanning electron microscope (SEM) and optical microscopy experiments are performed to investigate the crack growth behavior under the single tensile overload. The objectives are to (i) examine the overload-induced crack growth micromechanisms, including the initial crack growth acceleration and the subsequent retardation period; (ii) investigate the effective region of single overload on crack growth rate. The specimen is a small thin Al2024-T3 plate with an edge-crack, which is loaded and observed in the SEM chamber. The very high resolution images of the crack tip are taken under the simple variable amplitude loading. Imaging analysis is performed to quantify the crack tip deformation at any time instant. Moreover, an identical specimen subjected to the same load condition is observed under optical microscope. In this testing, fine speckling is performed to promote the accuracy of digital imaging correlation (DIC). The images around the crack tip are taken at the peak loads before, during and after the single overload. After that, the evolution of local strain distribution is obtained through DIC technique. The results show that the rapid connection between the main crack and microcracks accounts for the initial crack growth acceleration. The crack closure level can be responsible for the crack growth rate during the steady growth period. Besides that, the size of retardation area is larger than the classical solution.


2022 ◽  
Vol 16 (01) ◽  
Author(s):  
Dong He ◽  
Xiaobing Zhou ◽  
Xianglin Huang ◽  
Wenmin Zhang ◽  
Qingjiu Tian ◽  
...  

Author(s):  
K. Linga Murty ◽  
Chang-Sung Seok

Ferritic steels commonly used for pressure vessels and reactor supports in light water reactors (LWRs) exhibit dynamic strain aging (DSA) resulting in decreased ductility and toughness. In addition, recent work indicated decreased toughness during reverse-cyclic loading that has implications on reliability of these structures under seismic loading conditions. We summarize some of our recent work on these aspects along with synergistic effects, of interstitial impurity atoms (IIAs) and radiation induced point defects, that result in interesting beneficial effects of radiation exposure at appropriate temperature and strain-rate conditions. Radiation-defect interactions were investigated on pure iron, Si-killed mild steel, A533B, A516, A588 and other reactor support and vessel steels. In all cases, DSA is seen to result in decreased ductility accompanied by increased work-hardening parameter. In addition to mechanical property tests, fracture toughness is investigated on both A533B and A516 steels. While dips in fracture toughness are observed in A533B steel in the DSA region, A516 steel exhibited at best a plateau. The reasons could lie in the applied strain-rates; while J1c tests were performed on A533B steel using 3-point bend tests on Charpy type specimens, CT specimens were used for A516 steel. However, tensile and 3-point bend tests on similar grade A516 steel of different vintage did exhibit distinct drop in the energy to fracture. Load-displacement curves during J1c tests on CT specimens did show load drops in the DSA regime. The effect of load ratio (R) on J versus load-line displacement curves for A516 steel is investigated from +1 to −1 at a fixed normalized incremental plastic displacement of 0.1 (R = 1 corresponds to monotonic loading). We note that J-values are significantly reduced with decreasing load ratio. The work-hardening characteristics on the fracture surfaces were studied following monotonic and cyclic loading fracture tests along with the stress-field analyses. From the hardness and the ball-indentation tests, it was shown that decreased load ratio (R) leads to more strain hardening at the crack tip resulting in decreased fracture toughness. From the stress field analysis near the crack tip of a compact tension fracture toughness test specimen, a cycle of tensile and compressive loads is seen to result in tensile residual stresses (which did not exist at the crack tip before). These results are important to evaluations of flawed-structures under seismic loading conditions, i.e. Leak-Before-Break (LBB) and in-service flaw evaluation criteria where seismic loading is addressed. In addition, studies on fast vs total (thermal+fast) neutron spectra revealed unexpected results due to the influence of radiation exposure on source hardening component of the yield stress; grain-size of pure iron plays a significant role in these effects.


Author(s):  
Lei Zhao ◽  
Lianyong Xu

Creep-fatigue interaction would accelerate the crack growth behaviour and change the crack growth mode, which is different from that presenting in pure creep or fatigue regimes. In addition, the constraint ahead of crack tip affects the relationship between crack growth rate and fracture mechanics and thus affects the accuracy of the life prediction for high-temperature components containing defects. In this study, to reveal the role of constraint caused by various specimen geometries in the creep-fatigue regime, five different types of cracked specimens (including C-ring in tension CST, compact tension CT, single notch tension SENT, single notch bend SENB, middle tension MT) were employed. The crack growth and damage evolution behaviours were simulated using finite element method based on a non-linear creep-fatigue interaction damage model considering creep damage, fatigue damage and interaction damage. The expression of (Ct)avg for different specimen geometries were given. Then, the variation of crack growth behaviour with various specimen geometries under creep-fatigue conditions were analysed. CT and CST showed the highest crack growth rates, which were ten times as the lowest crack growth rates in MT. This revealed that distinctions in specimen geometry influenced the in-plane constraint level ahead of crack tip. Furthermore, a load-independent constraint parameter Q* was introduced to correlate the crack growth rate. The sequence of crack growth rate at a given value of (Ct)avg was same to the reduction of Q*, which shown a linear relation in log-log curve.


Sign in / Sign up

Export Citation Format

Share Document