scholarly journals Degradation of titanium 6Al–4V fatigue strength due to electrical discharge machining

2014 ◽  
Vol 64 ◽  
pp. 84-96 ◽  
Author(s):  
Todd M. Mower
2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Agnieszka Dmowska ◽  
Bogdan Nowicki ◽  
Anna Podolak-Lejtas

The paper presents the results of the influence of basic electrical discharge machining EDM parameters and electrical discharge alloying EDA parameters on surface layer properties and on selected performance properties of machine parts after such machining but also the influence of superficial cold-work treatment applied after the EDM of EDA on modification of these properties. The investigations included texture of the surface, metallographic microstructure, microhardness distribution, fatigue strength, and resistance to abrasive wear. It was proved that the application of the roto-peen after the EDM and the EDA resulted in lowering roughness height up to 70%, the elevation of surface layer microhardness by 300–700 μHV, and wear resistance uplifting by 300%.


Author(s):  
Robert J Beck ◽  
David K Aspinwall ◽  
Sein Leung Soo ◽  
Paul Williams ◽  
Roberto Perez

Fatigue performance is a major consideration for critical aerospace components. The influence of surface grinding and rough/finish wire electrical discharge machining (WEDM) on the high cycle fatigue performance of a binary Ti50.8-Ni49.2 shape memory alloy was assessed. The effect of machined workpiece surface integrity in terms of surface roughness and subsurface microhardness on the fatigue results was also evaluated, in addition to fractography analysis. Testing was performed using a tensile-tensile regime at an elevated temperature of 150°C with specimens in the austenitic phase. Ground samples showed the highest fatigue strength of 390 MPa at run-out of 1.2 × 107 cycles, while finish and rough WEDM specimens were 21% and 57% lower respectively, despite the finish WEDM surfaces having significantly lower roughness. This was likely due to the presence of tensile residual stresses following WEDM. All of the S-N curves however exhibited a relatively flat response with no clear indication of endurance limits. This implies that the different machining processes/conditions affected the fatigue strength of the material, but not the overall trend/shape of the fatigue curves.


Author(s):  
Bruna Michelle de Freitas ◽  
Carlos augusto Henning Laurindo ◽  
Paulo Soares ◽  
Leticia Bemben

2020 ◽  
Vol 40 (10) ◽  
pp. 870-872
Author(s):  
T. R. Ablyaz ◽  
E. S. Shlykov ◽  
K. R. Muratov

2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


Sign in / Sign up

Export Citation Format

Share Document