fatigue performance
Recently Published Documents


TOTAL DOCUMENTS

1861
(FIVE YEARS 592)

H-INDEX

53
(FIVE YEARS 12)

Author(s):  
Danqing Yu ◽  
Caroline Bennett ◽  
Jian Li ◽  
William Collins

2022 ◽  
Vol 190 ◽  
pp. 107109
Author(s):  
Zhou Shi ◽  
Yongcong Zhou ◽  
Zhitao Sun ◽  
Shili Yang

2022 ◽  
Vol 318 ◽  
pp. 125995
Author(s):  
Xiaoyan Sun ◽  
Yu Tian ◽  
Wenwen Yin ◽  
Hailong Wang

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Felipe Klein Fiorentin ◽  
Duarte Maciel ◽  
Jorge Gil ◽  
Miguel Figueiredo ◽  
Filippo Berto ◽  
...  

In recent years, the industrial application of Inconel 625 has grown significantly. This material is a nickel-base alloy, which is well known for its chemical resistance and mechanical properties, especially in high-temperature environments. The fatigue performance of parts produced via Metallic Additive Manufacturing (MAM) heavily rely on their manufacturing parameters. Therefore, it is important to characterize the properties of alloys produced by a given set of parameters. The present work proposes a methodology for characterization of the mechanical properties of MAM parts, including the material production parametrization by Laser Directed Energy Deposition (DED). The methodology consists of the testing of miniaturized specimens, after their production in DED, supported by a numerical model developed and validated by experimental data for stress calculation. An extensive mechanical characterization, with emphasis on high-cycle fatigue, of Inconel 625 produced via DED is herein discussed. The results obtained using miniaturized specimens were in good agreement with standard-sized specimens, therefore validating the applied methodology even in the case of some plastic effects. Regarding the high-cycle fatigue properties, the samples produced via DED presented good fatigue performance, comparable with other competing Metallic Additive Manufactured (MAMed) and conventionally manufactured materials.


Author(s):  
Faheem Sadiq Bhat ◽  
Mohammad Shafi Mir

The current study investigates the synergized effect of a nanomaterial and two warm mix additives asphalt (WMA) additives on different properties of asphalt binders. The study used an optimal percentage of 2% for nano-Al2O3; two WMA additives were used in different concentrations. The results revealed that the addition of WMA additives increased the softening point of nano-Al2O3 modified asphalt binder. Penetration and ductility results showed a decrease after the introduction of WMA additives. The viscosity of nano-Al2O3 modified asphalt binders showed a reduction after the introduction of WMA additives. Rutting evaluation was done by using the superpave rutting parameter and multiple stress creep and recovery (MSCR) test. The fatigue performance of the asphalt binders was measured using the superpave fatigue parameter and linear amplitude sweep (LAS) test. Results showed that the introduction of WMA additives improved the rutting and fatigue performance of nano-Al2O3 modified asphalt binders. The introduction of WMA additives enhanced the aging performance of the nano-Al2O3 modified asphalt binders.


Author(s):  
Tian Tian ◽  
Yingjun Jiang ◽  
Yong Yi ◽  
Jiangtao Fan ◽  
Changqing Deng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document