micro electrical discharge machining
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 47)

H-INDEX

19
(FIVE YEARS 3)

Mechatronics ◽  
2021 ◽  
Vol 79 ◽  
pp. 102649
Author(s):  
Kuo-Hsiung Tseng ◽  
Kuo-Hui Chen ◽  
Chaur-Yang Chang ◽  
Yagus Cahyadi ◽  
Meng-Yun Chung

Author(s):  
Gurpreet Singh ◽  
Vivek Sharma

Electrical discharge machining is an essential process in the domain of micromachining. However, many issues need to be solved to implement it in the industrial field. Increasing the machining rate still remains a challenging task in case of micro electrical discharge machining. It becomes impossible to machine a microfeature at a larger depth. Numerous investigators have investigated the positive effect of assistance such as magnetic field and ultrasonic vibration. This paper the discusses machining performance by simultaneously applying the ultrasonic vibration and magnetic field to the machining zone in micro-electrical discharge machining. The process performance is analyzed by measuring the performance characteristics such as material removal rate and taper of the microfeature. The results confirmed that the cumulative effect of each assistance ends in a better material removal rate and low taper of the microfeature.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6074
Author(s):  
Tingting Ni ◽  
Qingyu Liu ◽  
Zhiheng Chen ◽  
Dongsheng Jiang ◽  
Shufeng Sun

Micro electrical discharge machining (micro EDM) is able to remove conductive material by non-contact instantaneous high temperature, which is more suitable for machining titanium and its alloys compared with traditional machining methods. To further improve the machining efficiency and machined surface quality of micro EDM, the nano particle surfactant mixed micro EDM method is put forward in this paper. Experiments were conducted to explore the effect of nano particle surfactant on the micro EDM performance of titanium alloy. The results show that the material removal rate of micro EDM in dielectric mixed with TiO2 is the highest when open-circuit voltage is 100 V, followed by Al2O3 and ZrO2. Lower tool wear rate can be produced by using dielectric mixed with nano particle surfactant. The taper ratio of micro EDM in dielectric mixed with nano particle surfactant is higher than that in deionized water. The surface roughness Ra of micro EDM in dielectric mixed with TiO2 can be 50% lower than that in deionized water. It is helpful to improve the machining performance by adding surface surfactant in the dielectric of micro EDM.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1184
Author(s):  
Atanas Ivanov ◽  
Abhishek Lahiri ◽  
Venelin Baldzhiev ◽  
Anna Trych-Wildner

This paper provides an overall view of the current research in micro-electrical discharge machining (micro-EDM or µEDM) and looks into the present understanding of the material removing mechanism and the common approach for electrode material selection and its limitations. Based on experimental data, the authors present an analysis of different materials’ properties which have an influence on the electrodes' wear ratio and energy distribution during the spark. The experiments performed in micro-EDM conditions reveal that properties such as electron work function and electrical resistivity strongly correlate with the discharge energy ratio. The electrode wear ratio, on the other hand, is strongly influenced by the atomic bonding energy and was found to be related to the tensile modulus. The proposed correlation functions characterized the data with a high determination coefficient exceeding 99%.


2021 ◽  
pp. 2150083
Author(s):  
DEEPAK RAJENDRA UNUNE

This work investigates the influence of tool surface area (TSA) on the average surface roughness ([Formula: see text], tool wear rate (TWR) and material removal rate (MRR) in the micro-electrical discharge machining ([Formula: see text]EDM). The effects of three different TSAs were investigated at three different discharge energy settings. It was observed that the TSA had substantial influence on [Formula: see text]EDM performance owing to scaling effect. Therefore, the low-frequency workpiece vibration was applied to improve the [Formula: see text]EDM performance. The surface topography of machined surfaces was examined using scanning electron microscopy to disclose the effect of TSA as well as vibration frequency on [Formula: see text]EDMed surfaces.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 554
Author(s):  
Irene Fassi ◽  
Francesco Modica

Micro Electrical Discharge Machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed [...]


Sign in / Sign up

Export Citation Format

Share Document