Applicability of low transformation temperature welding consumables to increase fatigue strength of welded high strength steels

2017 ◽  
Vol 97 ◽  
pp. 39-47 ◽  
Author(s):  
Ebrahim Harati ◽  
Leif Karlsson ◽  
Lars-Erik Svensson ◽  
Kamellia Dalaei
2013 ◽  
Vol 768-769 ◽  
pp. 668-674 ◽  
Author(s):  
Lubos Mraz ◽  
Leif Karlsson ◽  
Pavol Mikula ◽  
Miroslav Vrána

It is well known that fatigue strength of welded joints does not depend on steel strength. Better fatigue strength of welded joints, e.g. longer life time of fatigue loaded weld structures, can be achieved with a smooth transition between the weld and the base material to minimize stress concentration. It has also been recognized that residual stresses play a critical role in the fatigue behaviour of welds. In the last decade an extensive research has been performed in order to increase the fatigue strength of high strength steel weldments. The martensite and bainite transformation start temperatures of weld metals have been shown to have a large effect on fatigue life time of high strength steel welds. This is of particular importance if the full potential of high strength steels is to be used in fatigue loaded constructions. A detailed investigation of the effect of phase transformation temperature on residual stress distribution in the vicinity high strength steel welds and its effect on fatigue life time has been performed. The transformation temperature of the weld metal was varied by changing the chemical composition of the filler material. Residual stress distributions have been measured by neutron as well as by X-ray diffraction and fatigue tests have been performed on the fillet welds. A strong effect of weld metal phase transformation temperature on residual stress level was observed. Fatigue strength increased approximately three times when an optimised low transformation temperature filler material was used in comparison to the application of conventional filler material.


2020 ◽  
Vol 62 (9) ◽  
pp. 891-899
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


Sign in / Sign up

Export Citation Format

Share Document