Online heat flux estimation using artificial neural network as a digital filter approach

Author(s):  
Hamidreza Najafi ◽  
Keith A. Woodbury
Author(s):  
Hamidreza Najafi ◽  
Keith A. Woodbury

Online heat flux measurement can greatly enhance the controllability in several industrial processes. Using heat flux estimation techniques based on temperature measurements is the best approach in many cases. Estimating the unknown heat flux (boundary condition) at the surface when temperature measurements are available in the interior points of the medium is an inverse heat conduction problem (IHCP). Several IHCP solution methods need the whole time domain data for the analysis and cannot be applied for real-time applications. Digital filter representation is one of the methods which can be used for near real-time heat flux estimation by using available temperature measurements. The idea of the filter algorithm is that the solution for the heat flux at any time is only affected by the recent temperature history and a few future time steps. Artificial Neural Network (ANN) is utilized in this study as a digital filter, for near real-time heat flux estimation by using temperature measurements. The performance of the ANN is compared with the digital filter coefficient method. ANN consists of a set of interconnected neurons that can evaluate outputs from inputs by feeding information through the network and adjusting the weights. Considering temperatures as the inputs and heat flux as the output, the weights can be interpreted as the filter coefficients. In using ANN, calculation of sensitivity coefficients is not needed which can lead to less computational cost. It is showed that the ANN method can estimate the heat flux closer to real-time comparing with digital filter approach. The developed method is tested through several numerical test cases using exact solutions.


2021 ◽  
Vol 13 (12) ◽  
pp. 2337
Author(s):  
Bruno César Comini de Andrade ◽  
Olavo Correa Pedrollo ◽  
Anderson Ruhoff ◽  
Adriana Aparecida Moreira ◽  
Leonardo Laipelt ◽  
...  

Soil heat flux (G) is an important component for the closure of the surface energy balance (SEB) and the estimation of evapotranspiration (ET) by remote sensing algorithms. Over the last decades, efforts have been focused on parameterizing empirical models for G prediction, based on biophysical parameters estimated by remote sensing. However, due to the existing models’ empirical nature and the restricted conditions in which they were developed, using these models in large-scale applications may lead to significant errors. Thus, the objective of this study was to assess the ability of the artificial neural network (ANN) to predict mid-morning G using extensive remote sensing and meteorological reanalysis data over a broad range of climates and land covers in South America. Surface temperature (Ts), albedo (α), and enhanced vegetation index (EVI), obtained from a moderate resolution imaging spectroradiometer (MODIS), and net radiation (Rn) from the global land data assimilation system 2.1 (GLDAS 2.1) product, were used as inputs. The ANN’s predictions were validated against measurements obtained by 23 flux towers over multiple land cover types in South America, and their performance was compared to that of existing and commonly used models. The Jackson et al. (1987) and Bastiaanssen (1995) G prediction models were calibrated using the flux tower data for quadratic errors minimization. The ANN outperformed existing models, with mean absolute error (MAE) reductions of 43% and 36%, respectively. Additionally, the inclusion of land cover information as an input in the ANN reduced MAE by 22%. This study indicates that the ANN’s structure is more suited for large-scale G prediction than existing models, which can potentially refine SEB fluxes and ET estimates in South America.


Sign in / Sign up

Export Citation Format

Share Document