flow oscillation
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Mohammed M. Al-Hatmi ◽  
Anton Purnama

Hydrodynamic interactions of a two-solid microspheres system in a viscous incompressible fluid at low Reynolds number is investigated analytically. One of the spheres is conducting and assumed to be actively in motion under the action of an external oscillator field, and as the result, the other nonconducting sphere moves due to the induced flow oscillation of the surrounding fluid. The fluid flow past the spheres is described by the Stokes equation and the governing equation in the vector form for the two-sphere system is solved asymptotically using the two-timing method. For illustrations, applying a simple oscillatory external field, a systematic description of the average velocity of each sphere is formulated. The trajectory of the sphere was found to be inversely proportional to the frequency of the external field. The results demonstrated that no collisions occur between the spheres as the system moves in a circular motion with a fixed separation distance.


2021 ◽  
Vol 4 ◽  
pp. 104-111
Author(s):  
Prayitno Ciptoadi ◽  
Mesak F. Noya ◽  
Gertruida S. Norimarna

The pulsatile fluid flow in a transverse grooved channel would become chaotic flows in low Reynold numbers. The Reynold number where flows become chaos depends on grooves distances. The objective of this research is to analyze the effect of grooves distances on the behavior of chaos. This research was done by implementing a closed square cross-section channel, where the bottom surface of the channel was semicircle grooved. The frequency of flow oscillation measurement was done by setting up a resistance sensor that is Wheatstone bridge where the resistance sensor was located in a U manometer. Measurement was done at several Reynold number. From the research result, it is seen that the periodic fluid flows in the transverse grooved channel had become chaos at Reynold number Re 950 in the channel without grooved and at Reynold number Re 700 in the grooved channel. Chaos took placed since a vortex appeared at every treatment.


2021 ◽  
Vol 158 ◽  
pp. 108281
Author(s):  
Haidong Liu ◽  
Wei Liu ◽  
Deqi Chen ◽  
Hanzhou Liu ◽  
Jiang Qin ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 74-79
Author(s):  
Prayitno Ciptoadi

The pulsatile fluid flow in a transverse grooved channel would become self-sustained oscillatory flow at a certain critical Reynold number. The critical Reynold number where laminar unsteady flow changed to unsteady transitional one depends on grooves distances. The objective of this research is to analyze the effect of grooves distances toward the vortex strength and the stability of the fluid flow. This research was done by implementing a closed square cross-section channel, where the bottom surface of the channel was semicircle grooved. The frequency of flow oscillation measurement was done by setting up a resistance manometer and measurement was done at several Reynold numbers. From the research result, it is seen that the largest vortex strength occurs at the smallest groove distance. The flows become instability in all of the grooves distances by seen Phase Plane.


2021 ◽  
Author(s):  
Kay Taegyeong Kang

A below-grade vertical stormwater storage system is one of the solutions to reduce the volume of sewer overflows released into the environment. The system is submerged most of the time during filling, which can result in hydraulic problems. This research intent to provide some insight on potential hydraulic problems that can occur in a vertical storage system during intense rain events. An experimental study was conducted using a physical scale model that consists of two vertical storage shafts, a horizontal tunnel and an inflow drop shaft. The results showed that both entrapped air in the system and mass flow oscillation in the system can cause a rapid rise of water level, or a geyser, at the drop shaft. The predictions of a modified version of HAMMER compared well with the experimental result while the InfoWorks CS model was unable to simulate vertical momentum in the drop shaft.


2021 ◽  
Author(s):  
Kay Taegyeong Kang

A below-grade vertical stormwater storage system is one of the solutions to reduce the volume of sewer overflows released into the environment. The system is submerged most of the time during filling, which can result in hydraulic problems. This research intent to provide some insight on potential hydraulic problems that can occur in a vertical storage system during intense rain events. An experimental study was conducted using a physical scale model that consists of two vertical storage shafts, a horizontal tunnel and an inflow drop shaft. The results showed that both entrapped air in the system and mass flow oscillation in the system can cause a rapid rise of water level, or a geyser, at the drop shaft. The predictions of a modified version of HAMMER compared well with the experimental result while the InfoWorks CS model was unable to simulate vertical momentum in the drop shaft.


Author(s):  
Yi-Horng Lai ◽  
Ai-Yi Wang ◽  
Chia-Chi Yang ◽  
Lan-Yuen Guo

Purpose: To determine the effect of vibrating rollers on skin blood flow after running for recovery from muscle fatigue. Method: 23 healthy runners, aged between 20 to 45 years, participated in a crossover trial. Muscle fatigue was induced by running, and recovery using a vibrating roller was determined before and after the intervention. Each subject was measured at three time points (prerun, postrun, and postroller) to compare skin blood flow perfusion and blood flow oscillation at the midpoint of the dominant gastrocnemius muscle. The results show that blood perfusion is greater when a vibrating roller is used than a foam roller, but there is no statistical difference. The analysis of blood flow oscillation shows that vibrating rollers induce 30% greater endothelial activation than a foam roller. Vibrating rollers significantly stimulate the characteristic frequency for myogenic activation (p < 0.05); however, the effect size is conservative.


2020 ◽  
pp. 107754632097447
Author(s):  
Mohammad Mehdi Meshki ◽  
Ali Salehzadeh Nobari ◽  
Mohammad Homayoune Sadr

In this study, based on parametric excitation originating from airflow oscillation, a novel nonlinear aeroelastic energy harvester is proposed. In this respect, first, the governing equation of the system is derived and studied thoroughly to understand the direct and indirect effects of airflow oscillation on the local and global responses of the system. Then, by using a pseudo-arclength continuation method based on the harmonic balance method, the stable and unstable periodic and quasi-periodic responses of the system are tracked and analyzed. It is demonstrated that the proposed self-parametric (combination parametric and self-excitation) energy harvester can extract more power than the respective nonparametric system for a wide range of amplitudes and frequencies. The gained knowledge of parametric, aeroelastic systems is applicable for both aero-harvesters and other aeroelastic systems undergoing flow oscillation.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Edward Shitsi ◽  
Seth Kofi Debrah ◽  
Vincent Yao Agbodemegbe ◽  
Emmanuel Ampomah-Amoako

Abstract Supercritical water-cooled reactor (SCWR), which is considered as the logical extension of existing light water reactors (LWRs) (pressurized water reactor and boiling water reactor (BWR)), has the potential of increasing the efficiency of power generation to 45% compared to 33% of that of LWRs. But without the challenges of heat transfer and hydrodynamics, and reactor core design materials due to supercritical flow instability which is associated with sharp variation in fluid properties near the vicinity of the pseudo-critical temperature. Supercritical flow instability therefore needs to be addressed ahead of the deployment and operation of SCWR in the near future. The main purpose of this study is to carry out flow instability analysis in parallel channels with supercritical water. The study also aims at examining the capability of using three-dimensional (3D) simulation of turbulent flow in arbitrary regions computational continuum mechanics C++ based code (3D STAR-CCM+ CFD code) to predict flow oscillation amplitude and periods, and instability power boundaries at low-power boundary (LPB) and at high-power boundary (HPB). Parameters considered in the investigation include mass flowrate, system pressure, and gravity. Two different threshold power instability boundaries were obtained from the study. These instability power boundaries include lower threshold where stability of the parallel channel system decreases with increasing coolant inlet temperature, and upper threshold where stability of the parallel channel system increases with increasing coolant inlet temperature. From the results of the investigation, it can be found that: (1) for LPB at 23 MPa, only lower threshold was obtained as flow instability power boundary; and for HPB at 23 MPa, both lower and upper thresholds were obtained as flow instability power boundaries. The numerical findings quite well agree with the experimental findings at 23 MPa for both LPB and HPB; (2) only lower threshold was obtained as flow instability power boundary at both 23 MPa and 25 MPa for LPB. For HPB, both lower and upper thresholds were obtained as flow instability power boundaries at both 23 MPa and 25 MPa; (3) only lower threshold was obtained as flow instability power boundary for the parallel channel system with or without gravity influence for LPB. For HPB, both lower and upper threshold flow instability power boundaries were obtained for the parallel channel system with gravity influence, but only lower threshold flow instability power boundary was obtained for system without gravity influence; (4) only lower threshold was obtained as flow instability power boundary at system mass flowrates of 125 kg/h and 145 kg/h for LPB. For HPB, both lower and upper threshold flow instability power boundaries were obtained for system mass flowrate of 125 kg/h, but only lower threshold flow instability power boundary was obtained for system mass flowrate of 145 kg/h. For both LPB and HPB, the numerical findings agree quite well with the experimental results for a system operated at 125 kg/h and 145 kg/h; (5) the investigated parameters such as mass flowrate, pressure, and gravity have significant effects on amplitude of mass flow oscillation, but have little effects on the period of mass flow oscillation for both LPB and HPB. Results from the numerical simulation were compared with the results from the experiment for both LPB and HPB. The numerical amplitude results obtained were far less than the amplitude results obtained from the experiment. But there was no significant difference between the oscillation periods obtained from both the numerical simulation and experiment. (6) Flow instability studies including predicting flow oscillation amplitude and periods, and instability power boundaries could be carried out using 3D STAR-CCM+ CFD code. The effects of heating structures on flow instability results have not been considered in this study. Previous studies have shown that including heating structures in geometrical models for numerical studies may have effects on flow instability results. More experimental studies are needed for validation of similar numerical studies carried out at supercritical pressures using various numerical tools.


Sign in / Sign up

Export Citation Format

Share Document