A new hydrodynamic boundary condition simulating the effect of rough boundaries on the onset of Rayleigh-Bénard convection

Author(s):  
Michele Celli ◽  
Andrey V. Kuznetsov
2018 ◽  
Vol 846 ◽  
pp. 5-36 ◽  
Author(s):  
Stéphane Labrosse ◽  
Adrien Morison ◽  
Renaud Deguen ◽  
Thierry Alboussière

Solid-state convection can take place in the rocky or icy mantles of planetary objects, and these mantles can be surrounded above or below or both by molten layers of similar composition. A flow towards the interface can proceed through it by changing phase. This behaviour is modelled by a boundary condition taking into account the competition between viscous stress in the solid, which builds topography of the interface with a time scale $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D702}}$, and convective transfer of the latent heat in the liquid from places of the boundary where freezing occurs to places of melting, which acts to erase topography, with a time scale $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D719}}$. The ratio $\unicode[STIX]{x1D6F7}=\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D719}}/\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D702}}$ controls whether the boundary condition is the classical non-penetrative one ($\unicode[STIX]{x1D6F7}\rightarrow \infty$) or allows for a finite flow through the boundary (small $\unicode[STIX]{x1D6F7}$). We study Rayleigh–Bénard convection in a plane layer subject to this boundary condition at either or both its boundaries using linear and weakly nonlinear analyses. When both boundaries are phase-change interfaces with equal values of $\unicode[STIX]{x1D6F7}$, a non-deforming translation mode is possible with a critical Rayleigh number equal to $24\unicode[STIX]{x1D6F7}$. At small values of $\unicode[STIX]{x1D6F7}$, this mode competes with a weakly deforming mode having a slightly lower critical Rayleigh number and a very long wavelength, $\unicode[STIX]{x1D706}_{c}\sim 8\sqrt{2}\unicode[STIX]{x03C0}/3\sqrt{\unicode[STIX]{x1D6F7}}$. Both modes lead to very efficient heat transfer, as expressed by the relationship between the Nusselt and Rayleigh numbers. When only one boundary is subject to a phase-change condition, the critical Rayleigh number is $\mathit{Ra}_{c}=153$ and the critical wavelength is $\unicode[STIX]{x1D706}_{c}=5$. The Nusselt number increases approximately two times faster with the Rayleigh number than in the classical case with non-penetrative conditions, and the average temperature diverges from $1/2$ when the Rayleigh number is increased, towards larger values when the bottom boundary is a phase-change interface.


Author(s):  
Sahin Yigit ◽  
Nilanjan Chakraborty

Purpose This paper aims to conduct numerical simulations to investigate steady-state laminar Rayleigh–Bénard convection of yield stress fluids obeying Bingham model in rectangular cross-sectional cylindrical annular enclosures. In this investigation, axisymmetric simulations have been carried out for nominal Rayleigh number range Ra = 103 to 105, aspect ratio range AR = 0.25 to 4 (i.e. AR = H/L where H is the enclosure height and L is the difference between outer and inner radii) and normalised inner radius range ri/L = 0 to 16 (where ri is internal cylinder radius) for a nominal representative Prandtl number Pr = 500. Both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions have been considered for differentially heated horizontal walls to analyse the effects of wall boundary condition. Design/methodology/approach The bi-viscosity Bingham model is used to mimic Bingham fluids for Rayleigh–Bénard convection of Bingham fluids in vertical cylindrical annuli. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity. Findings It is found that the convective transport strengthens (weakens) with an increase in Ra (AR) for both Newtonian (i.e. Bn = 0) and Bingham fluids, regardless of the boundary conditions. Moreover, the strength of convection is stronger in the CWT configuration than that is for CWHF boundary condition due to higher temperature difference between horizontal walls for both Newtonian (i.e. Bn = 0) and Bingham fluids. The mean Nusselt number Nūcy does not show a monotonic increase with increasing Ra for AR = 1 and ri/L = 4 because of the change in flow pattern (i.e. number of convection rolls/cells) in the CWT boundary condition, whereas a monotonic increase of Nūcy with increasing Ra is obtained for the CWHF configuration. In addition, Nūcy increases with increasing ri/L and asymptotically approaches the corresponding value obtained for rectangular enclosures (ri/L → ∞) for both CWT and CWHF boundary conditions for large values of ri/L. It is also found that both the flow pattern and the mean Nusselt number Nūcy are dependent on the initial conditions for Bingham fluid cases, as hysteresis is evident for AR = 1 for both CWT and CWHF boundary conditions. Originality value Finally, the numerical findings have been used to propose a correlation for Nūcy in the range of 0.25 ≤ ri/L ≤ 16, 0.25 ≤ AR ≤ 2 and 5 × 104 ≤ Ra ≤ 105 for the CWHF configuration.


Sign in / Sign up

Export Citation Format

Share Document