chemical equilibrium
Recently Published Documents


TOTAL DOCUMENTS

1590
(FIVE YEARS 222)

H-INDEX

65
(FIVE YEARS 8)

2022 ◽  
Vol 9 ◽  
Author(s):  
Jinshuang Ma ◽  
Chuanjia Qi ◽  
Siyi Luo ◽  
Zongliang Zuo

The existence of inert gases such as N2 and CO2 in biogas will reduce the proportion of combustible components in syngas and affect the combustion and NOX formation characteristics. In this study, ANSYS CHEMKIN-PRO software combined with GRI-MECH 3.0 mechanism was used to numerically simulate the effects of different CO2 concentrations (CO2 volume ratio in biogas is 0–41.6%) on flame combustion temperature, flame propagation speed and nitrogen oxide formation of complex biogas with low calorific value. The results showed that when the combustion reaches the chemical equilibrium, the flame combustion temperature and flame propagation speed decrease with the increase of CO2 concentration, and the flame propagation speed decreases even more slowly. Meanwhile, the molar fraction of NO at chemical equilibrium decreases with the increase of CO2 concentration and the decrease is decreasing, which indicates that the effect of CO2 concentration in biogas on NO is simpler. While the molar fraction of NO2 does not change regularly with the change of CO2 concentration, the effect of CO2 concentration in biogas on NO2 is complicated. The highest molar fraction of NO2 was found at chemical equilibrium when the CO2 concentration was 33.6%, when the target was a typical low calorific value biogas.


Author(s):  
Jing Liu ◽  
Chongkai Zhai ◽  
Jung-Rae Rho ◽  
Sangbum Lee ◽  
Ho Jin Heo ◽  
...  

Hyperammonemia is a deleterious and inevitable consequence of liver failure. However, no adequate therapeutic agent is available for hyperammonemia. Although recent studies showed that the pharmabiotic approach could be a therapeutic option for hyperammonemia, its development is clogged with poor identification of etiological microbes and low transplantation efficiency of candidate microbes. In this study, we developed a pharmabiotic treatment for hyperammonemia that employs a symbiotic pair of intestinal microbes that are both able to remove ammonia from the surrounding environment. By a radioactive tracing experiment in mice, we elucidated how the removal of ammonia by probiotics in the intestinal lumen leads to lower blood ammonia levels. After determination of the therapeutic mechanism, ammonia-removing probiotic strains were identified by high-throughput screening of gut microbes. The symbiotic partners of ammonia-removing probiotic strains were identified by screening intestinal microbes of a human gut, and the pairs were administrated to hyperammonemic mice to evaluate therapeutic efficacy. Blood ammonia was in a chemical equilibrium relationship with intestinal ammonia. Lactobacillus reuteri JBD400 removed intestinal ammonia to shift the chemical equilibrium to lower the blood ammonia level. L. reuteri JBD400 was successfully transplanted with a symbiotic partner, Streptococcus rubneri JBD420, improving transplantation efficiency 2.3×103 times more compared to the sole transplantation while lowering blood ammonia levels significantly. This work provides new pharmabiotics for the treatment of hyperammonemia as well as explains its therapeutic mechanism. Also, this approach provides a concept of symbiotic pairs approach in the emerging field of pharmabiotics.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 321
Author(s):  
Liyan Sun ◽  
Junjie Lin ◽  
Dali Kong ◽  
Kun Luo ◽  
Jianren Fan

CO methanation is an exothermic process, and heat removal is an essential issue for the methanation reactor. Numerical studies were carried out to investigate the performance of a 3D fluidized bed methanation reactor with immersed cooling tubes. The simulations were carried out in the frame of the Euler–Euler model to analyze the performance of the reactor. The influences of operating temperatures were studied to understand the reaction characteristics. The temperature increases rapidly neared the inlet due to the reactions. The immersed tubes were effective at removing the reaction heat. The chemical equilibrium state was achieved with an operating temperature of 682 K for the case with immersed tubes. Different control mechanisms can be found during the process of increasing and decreasing the temperature. The reaction kinetic is the dominate factor for the cases with lower temperatures, while the chemical equilibrium will play a more important role at high temperature conditions. The configuration with staggered tubes is beneficial for heat removal.


2021 ◽  
Vol 5 (2) ◽  
pp. 70-76
Author(s):  
Rendy Priyasmika ◽  
Ika Farida Yuliana

Abstract. The change in the educational paradigm in the 21st century requires students to have good basic knowledge and understanding to develop Higher Order Thinking Skills (HOTS). Chemical equilibrium is an abstract material and complex, so it requires good thinking skills to understand the concepts. This Study aims to determine the effect of the application of guided inquiry models on HOTS in chemical equilibrium. This research uses Pre-Experimental Design with One Shot Case Study model with 25 students of Billfath University as subjects. The data were collected using the HOTS test instrument in the form of 15 multiple choice questions. Hypothesis testing used the Independent Sample T-test (non-parametric). The results showed (1) the high-level learning outcomes of students with high initial abilities were better than students with low initial abilities, (2) there was a significant effect of applying the model Guided inquiry learning towards student high-level learning outcomes.


Author(s):  
Michael Kathan ◽  
Stefano Crespi ◽  
Niklas O. Thiel ◽  
Daniel L. Stares ◽  
Denis Morsa ◽  
...  
Keyword(s):  

2021 ◽  
Vol 16 (4) ◽  
pp. 218-233
Author(s):  
Gülseda Eyceyurt Türk ◽  
◽  
Ümmüye Nur Tüzün ◽  

2021 ◽  
Author(s):  
Fabio Bordeaux Rego ◽  
Shayan Tavassoli ◽  
Esmail Eltahan ◽  
Kamy Sepehrnoori

Abstract Carbon dioxide injection into sedimentary formations has been widely used in enhanced oil recovery (EOR) and geological-storage projects. Several field cases have shown an increase in water injectivity during CO2 Water-Alternating-Gas (WAG) projects. Although there is consensus that the rock-fluid interaction is the main mechanism, modeling this process is still challenging. Our main goal is to validate a physically based model on experimental observations and use the validated model to predict CO2 injectivity alteration based on geochemical reactions in carbonate rocks. In this paper, we present a new method for CO2 reactive transport in porous media and its impact on injectivity. We hypothesize that if CO2 solubilizes in the connate water, then it induces a shift in chemical equilibrium that stimulates mineral dissolution. Consequently, porosity and permeability will increase, and cause alterations to well injectivity. We develop a predictive model to capture this phenomenon and validate the model against available data in the literature. We use UTCOMP-IPhreeqc, which is a fully coupled fluid-flow and geochemical simulator to account for rock/hydrocarbon/water interactions. In addition, we perform several experiments to test CO2/water slug sizes, mineralogy assembly, injected brine composition, and gravity segregation combined with the effect of heterogeneity. Coreflood simulations using chemical equilibrium and kinetics indicate mineral dissolution at reservoir conditions. The results suggest that the intensity of rock dissolution depends on formation mineralogy and brine composition as carbonate systems work as buffers. Additionally, we show that prolonged CO2 and brine injection induces petrophysical alteration close to the injection region. Our field-scale heterogeneous reservoir simulations show that permeability alteration calculated based on Carman-Kozeny correlation and wormhole formulation had the same results. Furthermore, we observed that water injectivity increased by almost 20% during subsequent cycles of CO2-WAG. This finding is also supported by the Pre-Salt carbonate field data available in the literature. In the case of continuous CO2 injection, the carbonate dissolution was considerably less severe in comparison with WAG cases, but injectivity increased due to unfavorable CO2 mobility. With the inclusion of gravity segregation, we report that the injectivity doubles in magnitude. The simulations show more extensive dissolution at the upper layers of the reservoir, suggesting that preferential paths are the main cause of this phenomenon. The ideas presented in this paper can be utilized to improve history-matching of production data and consequently reduce the uncertainty inherent to CO2-EOR and carbon sequestration projects.


2021 ◽  
pp. 27-36
Author(s):  
Martin Schmal ◽  
José Carlos Pinto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document