Direct numerical simulation of flow and heat transfer in a simplified pressurized thermal shock scenario

Author(s):  
A. Shams ◽  
D. De Santis ◽  
D. Rosa ◽  
T. Kwiatkowski ◽  
E.J.M. Komen
2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Stefan Batzdorf ◽  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

The heat and mass transfer close to the apparent three-phase contact line is of tremendous importance in many evaporation processes. Despite the extremely small dimensions of this region referred to as the microregion compared to the macroscopic length scale of a boiling process, a considerable fraction of heat can be transferred in this region. Due to its small characteristic length scale, physical phenomena are relevant in the microregion, which are completely negligible on the macroscopic scale, including the action of adhesion forces and the interfacial heat resistance. In the past, models have been developed taking these effects into account. However, so far these models are based on the assumption of one-dimensional (1D) heat conduction, and the flow within the thin liquid film forming the microregion near the apparent three-phase contact line is modeled utilizing the lubrication approximation. Hence, the application of existing models is restricted to small apparent contact angles. Moreover, the effects of surface structures or roughness are not included in these lubrication models. To overcome these limitations, a direct numerical simulation (DNS) of the liquid flow and heat transfer within the microregion is presented in this paper. The DNS is employed for validation of the existing lubrication model and for investigation of the influence of surface nanostructures on the apparent contact angle and in particular on the heat transfer within the microregion.


Sign in / Sign up

Export Citation Format

Share Document