Numerical study on the heat transfer enhancement and pressure drop inside deep dimpled tubes

Author(s):  
Mohammad Hassan Cheraghi ◽  
Mohammad Ameri ◽  
Mohammad Shahabadi
2005 ◽  
Vol 2005.15 (0) ◽  
pp. 541-544
Author(s):  
Himsar AMBARITA ◽  
Kouki KISHINAMI ◽  
Kazuhiko SATO ◽  
Masasi DAIMARUYA ◽  
Hiromu SUGIYAMA ◽  
...  

Author(s):  
Inderjot Kaur ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract This paper presents numerical study on heat transfer enhancement due to the combination of rectangular winglet pair with V-dimples in an array-type arrangement. Array of rectangular winglet pairs results in heat transfer enhancement, however, at a cost of significant pressure drop, resulting in reduced thermal-hydraulic performance (THP). On the other hand, dimples are associated with lower heat transfer enhancement levels at relatively lower pumping power penalty. To this end, a combination of rectangular winglet pair and V-shaped dimples has been studied in this paper, where the arrangements were intended to achieve enhanced thermal-hydraulic performance. Three different configurations, namely, rectangular winglet pair, rectangular winglet pair with one V-dimple between two consecutive winglets, and rectangular winglet pair with two V-dimples packed in a pitch, are studied here. The variation of heat transfer enhancement, pressure drop gain, and THP with respect to winglet-to-winglet (S) spacing variation for rectangular winglet pair and rectangular winglet pair with one V-dimple configuration is presented at a Reynolds number of 25,000. The THP of the rectangular winglet pair configuration decreases up to S/H equal to 2.5 and then increases (H: channel height). For rectangular winglet pair with one V-dimple, three values of winglet-to-dimple (P) spacings are analyzed. For fixed S/H, the highest P/H configuration provided highest heat transfer enhancement and THP. Among the three configurations studied, rectangular winglet pair with two V-dimples resulted in the highest thermal-hydraulic performance.


Author(s):  
Sivasankara Reddy Ramireddy ◽  
Siddappa Pallavagere Gurusiddappa ◽  
V. Kesavan ◽  
S. Kishore Kumar

A Numerical study of fluid flow, heat transfer and pressure drop in a stationary matrix cooling channel having an angle of 45 degrees for the three Reynolds numbers (24000<Re<60000) and four sub-channel aspect ratios (0.5<W/H<1.2) have been performed. This includes different shaped sub-channels such as Rectangular, U, and then two, three layered matrix combined with open and closed matrix channels. The simulation shows the development of vortices along the channel. The flow turning and impingement after hitting the side wall have significant contribution to the heat transfer enhancement. The Nusselt number and friction factor have been evaluated and compared with limited experimental results. The highest heat transfer enhancement is found at impingement region as the flow takes turn and impinges on to the wall. But slight enhancement in heat transfer is observed at turning region. The sub-channel aspect ratio has less impact on heat transfer enhancement, but more effect on pressure drop. The performance of closed matrix is relatively better than the open matrix one. The overall thermal performance (η) of the matrix having U sub-channel is nearly 10% higher than the rectangular sub-channel.


1995 ◽  
Vol 117 (1) ◽  
pp. 46-51 ◽  
Author(s):  
H. A. Hadim ◽  
A. Bethancourt

A numerical study was performed to analyze steady laminar forced convection in a channel partially filled with a fluid-saturated porous medium and containing discrete heat sources on the bottom wall. Hydrodynamic and heat transfer results are reported for the configuration in which the porous layers are located above the heat sources while the rest of the channel is nonporous. The flow in the porous medium was modeled using the Brinkman-Forchheimer extended Darcy model. Parametric studies were conducted to evaluate the effects of variable heat source spacing and heat source width on heat transfer enhancement and pressure drop in the channel. The results indicate that when the heat source spacing was increased within the range considered, there was a negligible change in heat transfer enhancement while the pressure drop decreased significantly. When the heat source width was decreased, there was a moderate increase in heat transfer enhancement and a significant decrease in pressure drop.


Sign in / Sign up

Export Citation Format

Share Document